
Contour Point Tracking by Enforcement of Rigidity Contraints

Ricardo Oliveira ∗ João Costeira † João Xavier

Instituto de Sistemas e Robótica - Instituto Superior Técnico
Av. Rovisco Pais, 1049-001 Lisboa Codex, PORTUGAL

{rco, jpc, jxavier}@isr.ist.utl.pt

Abstract

The aperture problem is one of the omnipresent issues
in computer vision. Its local character constrains point
matching to high textured areas, so that points in gradi-
ent - oriented regions (such as straight lines) can not be
reliably matched. We propose a new method to overcome
this problem by devising a global matching strategy under
the factorization framework.

We solve the n-frame correspondence problem under
this context by assuming the rigidity of the scene. To this
end, a geometric contraint is used that selects the matching
solution resulting in a rank-4 observation matrix.

The rank of the observation matrix is a function of the
matching solutions associated to each image and as such a
simulteaneous solution for all frames has to be found. An
optimization procedure is used in this text in order to find
the solution.

1. Introduction

Reconstructing a 3D scene from a sequence of 2D im-
ages is one of the most important problems in computer
vision. However, a successful reconstruction is dependent
on a precise matching of the points in the several frames.
For instance, successful SFM algorithms like [3], [8] or
[10] assume that correspondences have already been estab-
lished. On the other hand, feature trackers as [5] and stereo
algorithms as [4] are not designed with reconstruction in
mind. We propose to design a correspondence strategy that
optimizes the reconstruction criterion. In the factorization
framework ([3], [8], [9], [10]) this criterion is translated
into a rank constraint on the measurement matrix.

Important gains in reconstruction performance can be
obtained by performing correspondence in areas with poor

∗This work was supported by FCT PhD Grant SFRH/BD/6434/2001.
†This work was partially supported by FCT under contract

POSI/SRI/34121/1999) in the framework of QCAIII.

texture, as the contour lines in an image. However, the
aperture problem prevents the reliable extraction of match-
ing candidates on generic contour poins. Because of this,
traditional matching algorithms such as [5] are dependent
on specific patterns (e.g. corners) in the image to identify
and extract matching candidates. In this context, matching
image points in scenes that do not present clear corners is
of great difficulty. The use of a matching algorithm based
on geometry is not dependent upon specific brightness pat-
terns in the images and can thus use any contour point as a
match candidate. Moreover, we provide a global solution.

Previous matching algorithms based on geometric con-
straints have used non-linear cost functions [6]. This as-
pect limits their applicability to problems with a reduced
number of points, since calculation time rises rapidly with
the dimension of the problem. This is an important issue
since practical applications usually require the solution of
high dimensional problems. Another aspect is that [6] does
not provide an efficient framework to deal with image se-
quences.

Our aim is to match the images in a video sequence in
such a way as to optimize the rigidity in the scene. To
achieve this, we present a geometric correspondence algo-
rithm based on a computationally feasible cost function,
that is simulteaneously capable of handling a large number
of image points. Moreover, the algorithm should be able to
reject a significant number of outliers that usually arise in
real-life applications.

2. Problem formulation

This work is an evolution of the approach presented in
[7], in which we propose a global method that is capable of
solving the n-frame correspondence problem in the factor-
ization context. Our objective is to provide a set of match-
ing solutions to features contained in the frames of a video
sequence. These features are represented in an observation
matrix W so that corresponding observations occupy the
same column. We will show that the solution to this prob-



lem can be found in an efficient way by imposing rank con-
straints on W . It should be emphasized that the alignment
of each frame is by itself a combinatorial problem. The
multiple frame correspondence problem (i.e. the alignment
of all images in W ) is consequently an extremely complex
task.

Subspace constraints on image coordinates have been
established explicitly for the paraperspective camera in [8]
and the orthographic camera in [10] - however, our formu-
lation holds for any generic affine camera.

A drawback is that our method requires an initialization
to bootstrap the matching procedure.

2.1. Feature representation

Observations on each frame are represented as a set of
image coordinates containing the orthogonal projection of
3D feature points in the scene. It should be stressed that
in this text the expression feature point applies to a generic
contour point and should thus not be confused with a corner
point. Assuming pf feature points, we represent the u and
v image coordinates of a frame f in the uf and vf vectors.
We assume that each set of pf feature points is corrupted by
a certain number of outliers, except for w1 which contains
only the points that are to be tracked (i. e. inliers). The
matrix corresponding to frame f is thus represented by

wf =

[
uf

1 · · · uf
pf

vf
1 · · · vf

pf

]
(1)

Measurements corresponding to several frames can be ver-
tically stacked in order to create a measurement matrix Wf

that incorporates the projection of the feature points up to
scene f . However, the outliers in each frame have to be
rejected beforehand; moreover, the remaining points have
to be aligned so that corresponding features share the same
column in Wf . Matrix Pf simultaneously aligns the feature
points and rejects the outliers in the corresponding mea-
surement matrix wf . Wf can consequently be written as

Wf =


 w1

w2 P2
.
.
.

.

.

.
wf Pf


 =




[
u1
1 · · · u1

p0
v1
1 · · · v1

p0

]
I[p0×p0][

u2
1 · · · u2

p2
v2
1 · · · v2

p2

]
P2[p2×p0]

.

.

.

.

.

.[
u

f
1

· · · u
f
pf

v
f
1

· · · v
f
pf

]
Pf

[
pf×p0

]




(2)
In (2), each Pk is a rowwise partial permutation matrix,

that is defined by the conditions in (3). In the remainder of
the paper, for the sake of simplicity, we will refer to these
matrices simply as partial permutation matrices.

Pkij = {0, 1}, ∀i = 1...pk, ∀j = 1...p0∑
i

Pkij = 1,∀j = 1...p0∑
j

Pkij ≤ 1,∀i = 1...pk∑
i,j

Pkij = p0

(3)

In each of the frames, the optimal Pk allows a correct
alignment of wk to be obtained, as depicted in Figure 1.









=⇔



























=

fff

fff

f

ffff

ffff

f

vvv
uuu

Pw

vvvv
uuuu

Pw

341

341

4321

4321

010
100
000
001

Figure 1. Rowwise Partial Permutation Matrix

In (2) p0 identifies the number of features that will be
matched, i. e. not discarded. p0 is equivalent to the number
of features in w1, which contains no outliers. Note that it
is assumed that p0 ≤ pk, ∀k - for this reason, Pk is usually
a rectangular matrix, since a null row is added for each
outlier. Furthermore, it is assumed that these p0 features
are visible in every frame throughout the sequence.

2.2. Enforcing rank constraints

It has been shown in [10] and in [8] that a measurement
matrix similar to the one presented in (2) is highly rank-
defficient. More specifically, when including translation
Wf is at most rank-4 in either model.

Work on factorization algorithms such as the ones re-
ferred in the previous paragraph is based on the assumption
that a matching solution between the image points has al-
ready been found, so that image coordinates corresponding
to the same feature point occupy the same column. In the
presence of incorrect matches, the resulting Wf is (gener-
ally) of higher rank. Note that in the presence of a limited
amount of noise the rank-4 constraint may still be assumed
as valid.

When processing a video sequence up to a frame f ,
our problem is thus to find the set of partial permuta-
tion matrices P2, ..., Pf that chooses and orders features
in w2, ..., wf so as to generate a rank-4 Wf . Note that
the afore-mentioned rank constraint, as it acts on Wf as
a whole, requires that all permutation matrices be recal-
culated each time a new frame is processed. To avoid the



complexity of solving simultaneously for all Pk, we choose
to solve the problem for each partial permutation matrix in
sequence, while keeping the remaining matrices constant.
In practice, we use a cyclic coordinate descent algorithm to
solve an optimization problem in P2×P3×...×Pf , where
Pk represents the space of all partial permutation matrices
of dimension pk × p0.

2.3. A permutation-based cost function

At the kth step of the cyclic coordinate descent algo-
rithm, we solve for Pf−k+1 individually. In this section
we develop a cost function that solves the correspondence
problem for the f −k+1th frame while assuming all other
frames are correctly matched.

We consider the SVD decomposition of Wf

Wf = QΣV T (4)

and define Z as

Z = WfWT
f =


w1w

T
1 w1P

T
2 wT

2 · · · w1P
T
f wT

f

w2P2w
T
1 w2P2P

T
2 wT

2 · · · w2P2P
T
f wT

f
...

...
...

wfPfwT
1 wfPfPT

2 wT
2 · · · wfPfPT

f wT
f




(5)
As can be seen in (5), Z is a function of all permutation

matrices. However, all of them will be considered as con-
stant except for matrix Pf−k+1 when solving the problem.
The aim of our cost function is to find the matching solu-
tion for frame f − k + 1 that approximates a rank-4 Wf

at the kth step of the cyclic coordinate descent algorithm.
This is equivalent to minimizing the sum of all eigenvalues
λi of Z , with the exception of the four largest ones. The
eigenvalues of Z can be obtained, by definition, from the
following expression, where qi represents the ith column
of Q, i. e. the ith eigenvector:

λi = qT
i Z(P2, ..., Pf−k+1, ..., Pf )qi (6)

In (6), each Pn ∈ Pn. As before, Pn represents the
space of all partial permutation matrices of dimension pn×
p0.

Note that a cost function that relies solely on the mini-
mization of λ5 might not be effective in obtaining a rank-4
matrix, due to the fact that there would be no control on
the behavior of the remaining non-dominant eigenvalues.
The consequence of this would be that these eigenvalues
could take on values that would induce a non-optimal solu-
tion solution, despite a low λ5. Consequently, we choose to
minimize the sum of all non-dominant eigenvalues. When
processing frame f , this implies the minimization of the
sum of the 2f−2 smallest eigenvalues, since Wf has 2f+2

rows when the f th frame is processed (the practical need
for two additional rows in Wf will be made clear in the
section dedicated to initialization).

It should be noted when minimizing the eigenvalues
that the value of each λi depends itself on the structure
of Pf−k+1. Our matching problem must thus be formal-
ized as the search for the optimal partial permutation ma-
trix P ∗

f−k+1 such that:

P∗
f−k+1 = arg min

Pf−k+1

(∑
i>4

λi(P̂2, ..., Pf−k+1, ..., P̂f )

)
=

arg min
Pf−k+1




∑
i>4

max

s.t.

qT
i qi = 1

qT
i qj = 0
i < j

qT
i Z(P̂2, ..., Pf−k+1, ..., P̂f )qi




(7)

The partial permutation matrices that are not being opti-
mized are represented with a ’hat’, to emphasize that their
values correspond to estimates that are being held constant
at the current iteration. Note that there is an interdepen-
dency between the values of the permutation matrices and
the eigenvectors of Z . To solve this problem, our algorithm
runs iteratively, alternating the optimization on Pf−k+1

and on qnd (the set {q5, ..., q2f+2} of non-dominant eigen-
vectors of Z). At each iteration of the algorithm a new
Pf−k+1 is calculated by minimizing the cost function us-
ing the current estimate of qnd. The maximization in qnd

is subsequently solved by extracting the eigenvectors of Z
corrected according to the newly found Pf−k+1. The algo-
rithm will continue to iterate alternatively in Pf−k+1 and
qnd until convergence is achieved. Our algorithm requires
an initial estimate for qnd. This is mathematically equiv-
alent to estimating a base of the null space of Wf at the
beginning of each iteration.

3. Methodology

3.1. Constructing a linear cost function

Each term (corresponding to the ith eigenvalue) of the
cost function we obtained in the previous section is non-
linear in Pf−k+1, due to the element Pf−k+1P

T
f−k+1 in

the diagonal of Z . However, since Pf−k+1 is a partial per-
mutation matrix, this term can be written as:



Pf−k+1P
T
f−k+1 =



p0∑
i=1

Pf−k+1
2
1i 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0
p0∑

i=1

Pf−k+1
2
pf−k+1i




(8)
Taking into account that the elements of Pf−k+1 are ei-

ther 0 or 1, the jth term of the diagonal of the matrix in (8)
can be simplified to

∑p0
i=1 Pf−k+1ji. In practice, this leads

to a minimization procedure which is linear in Pf−k+1.
Given a matrix M , the vec operator stacks its columns

in order to form a vector. Rearranging Pf−k+1 as x =
vec (Pf−k+1), we can write a modified cost function as a
linear function of x. Given qnd, x can now be retrieved as
the solution to the following linear program:

x∗ = arg min
x

c.x

s.t.
x = vec (Pf−k+1) , Pf−k+1 ∈ Pf−k+1

(9)

The coefficient vector c of the linear program can be
determined by developing∑

i>4

qT
i Z(P̂2, ..., Pf−k+1, ..., P̂f )qi (10)

in order to the elements of Pf−k+1, given qnd. Since
this expression is linear in Pf−k+1 it is possible to rewrite
it as a dot product of two vectors c and x, where x gathers
the elements of Pf−k+1 as described in (9). Under these
conditions, c is given by the sum of all ci associated to the
ith eigenvector of Z . each ci is given by:

ci = 2
[(

qT
1 Wc

) ⊗ (
qT
2 wk

)]
+

1[1×p0] ⊗
[(

wT
k q2

)T • (
wT

k q2

)T
] (11)

where the details of the calculation of ci are given in the
Appendix.

The formulation presented in (9) still remains an integer
minimization problem and as such has no efficient solu-
tion. However, it can be demonstrated that an equivalent
concave cost function can be built in the sense that it at-
tains the same values as the original for all possible values
of Pf−k+1. It is also known that the minimum of a con-
cave function over a compact convex set C is located at an
extreme point of C. Consequently, the constraint set of a
minimization problem with concave objective function can
be relaxed into its convex-hull, provided that all the points
in the original set are extreme points of the new set. In the
present case, it can be shown that the convex-hull of the

set of partial permutation matrices Pk is the set of rowwise
substochastic matrices Sk . This set can be defined by the
second and third equations in (3) and by the condition

Pkij ≥ 0, ∀i = 1...pk, ∀j = 1...p0 (12)

The resulting problem is thus equivalent to the origi-
nal, but for this class of problems (concave programming
problems) there exist several efficient algorithms that can
provide an adequate solution. The process is depicted in
Figure 2:

P k P k

S k

Exhaustive 
Search

C
on

ca
ve

 
O

bj
ec

tiv
e

G
uided S

earch

Continuous 
Domain

Figure 2. Relaxation Process

This method of solving the integer optimization problem
has originally been proposed in [6].

3.2. Finding an optimum set of permutation matri-
ces

As described in the previous sections, for each new
frame in the sequence all permutation matrices are recal-
culated. This is done by first determining Pf assuming
P2,...,Pf−1 as constant. The new Pf is used to correct qnd

and Pf−1 is then recalculated assuming P2,...,Pf−2, Pf

constant. This procedure is repeated until every permuta-
tion matrix has been recalculated. Convergence is achieved
when all matrices have been recalculated and no change is
recorded in any of them.

By using this process, we allow a matching error in an
earlier frame to be corrected through the introduction of
new frames.

3.3. Initializing the algorithm

Each time a new frame is made available, an estimate
of the non-dominant eigenvectors qnd of Z is required to
bootstrap the algorithm. However, the last pair of rows of
Z , corresponding to the new and still unmatched frame, is
not known. To overcome this problem, we assume that the
movement in the scene is smooth, in the sense that the 3D
movement from frame f − 2 to frame f − 1 is equal to the



movement from frame f − 1 to f . By using this approach
we are able to determine a rough estimate of the position
of the feature points in the new frame. The eigenvectors of
the resulting Z̄ can be used to start the method.

The key assumption in this process is that the movement
between the images is small and smooth, so that the esti-
mation of the initialization vectors can be precise. As can
be seen in section 5., this assumption is true for most video
sequences that have been built with a reasonable sampling
rate.

Note that the subsequent steps of the cyclic coordinate
descent algorithm do not have to be initialized, since they
use the set of eigenvectors that results from the previous
step. Consequently, the initialization problem only exists
for the first step, i.e. once per frame.

Using the framework described in the previous sections,
it is possible to process an image sequence automatically.
However, when determining the correspondence for w2, no
previous initialization is available and the above mentioned
method to determine the qnd can consequently not be used.
In this case, it becomes necessary to estimate the initializa-
tion vectors for the first case (which is often possible if the
disparity is small enough) or to provide them externally.

Another problem arises when dealing with frame 2:
since only two frames (1 and 2) would be available at the
time, W2 would, under normal conditions, be rank-4 for
all P2. This means that at the start of the algorithm, an
additional pair of rows has to be available so that P2 can
be computed. To circumvent this issue several solutions
are possible: we provide an additional image w0, so that
w1∗ actually contains two aligned frames w0 and w1. The
matching of these two frames can be achieved, for instance,
with [6]. Under these circumstances W2 has 6 rows, so that
only the correct P2 will cause this matrix to be rank def-
ficient. If w0 is chosen judiciously this also has the side
effect of eliminating numerical problems.

3.4. Correcting matching errors

When determining a Pk, it is possible that a matching
error occurs. This error will not only lower the quality of
the solution in the frame where it occurs - since it is prop-
agated into the algorithm it can also induce further errors
in subsequent steps of the cyclic coordinate descent algo-
rithm.

To prevent this error integration process, we use a cor-
rection algorithm that identifies the mismatched features by
reprojecting the obtained Wf into a rank-4 W fact

f . By as-
suming a rank-4 approximation of Wf , the base Rf for
the row space of Wf can be calculated from the rows
corresponding to previously matched frames. By using
the columns of Wf and Rf that correspond to correctly
matched features we can determine, in the least-squares

sense, a corresponding base Cf for the column space of
Wf . The values of the incorrecly matched features can
then be recovered by multiplying Cf by the submatrix of
Rf containing the mismatched features.

This process is similar to that described in [1] for han-
dling occlusions. Note that the algorithm is able to recover
a complete set of features even if correctly matched fea-
tures are marked as mismatched. We use the corrected ma-
trix to generate new initialization vectors, with which we
will rerun the matching problem until a stable matching
solution is found.

4. Summary of the algorithm

Based on the previous chapters, we present in this sec-
tion an outline of the steps necessary to process a video
sequence.

4.1. The sequencing process

1. Extract the set of observations wf corresponding to a
new frame. This is the current frame (k = 1).

2. Given qnd and w1, w2, ..., wf , run the Matching Pro-
cess in order to obtain the partial permutation matrix
Pf−k+1 corresponding to the current frame.

3. Perform error correction by feature reprojection as de-
scribed in 3.4 until a stable Pf−k+1 is obtained.

4. Correct qnd and repeat 2. and 3. with k = k + 1, until
k = f − 1.

5. If any change in the set of permutation matrices is
recorded, go to 2. and repeat the algorithm with k
reset to 1.

6. Using the new results determine the initialization vec-
tors qnew

nd for the next frame, by extracting the eigen-
vectors of Z(P2, ..., Pf ).

4.2. The matching process

1. Given w1, ..., wf−k+1, ..., wf and the appropriate qnd,
build a linear cost function for Pf−k+1 as detailed in
2.3 and 3.1.

2. Solve the integer optimization problem for Pf−k+1 by
using relaxation as referred in 3.1.

3. If Pf−k+1 has converged, stop.

4. Given Pf−k+1, update qnd as the eigenvectors of
Z(Pf−k+1).

5. Return to 1.



5. Experiments

We tested our algorithm on two sets of data - the syn-
thetic ’Cube’ sequence and the ’Hotel’ sequence. The latter
(real) sequence was originally obtained from CMU’s Im-
age database (http://vasc.ri.cmu.edu/idb/ ) and its images
can be considered orthographic for all practical purposes.

In this set of experiments we intend to demonstrate the
algorithm’s ability to successfully track a rigid object in a
video sequence. In both experiments, the algorithm is ini-
tialized by the user: in the ’Cube’ Sequence theoretical val-
ues are used, while in the ’Hotel’ sequence initial matches
are selected manually for initialization.

The matching solution to a frame will typically result in
a linear program with tens of thousands of variables, that
can take some time to solve. In order to speed up the pro-
cess, we use a priori knowledge, by assuming that there is
a limited disparity between consecutive images. This al-
lows us to rule out matching solutions that would result in
a very large movement of the features - in practice, this is
equivalent to forcing some of the entries of the partial per-
mutation matrix to 0. In this way, an important reduction
of dimensionality is achieved. It has been verified that this
reduction does not affect the final result, but only the time
required to obtain it.

It can easily be seen that the number of rows of Wf

grows linearly with the number of frames. Although the
number of variables in each linear program does not suf-
fer an increase the minimum number of cyclic coordinate
descent iterations will increase significantly, thereby sig-
nificantly slowing down the algorithm. In practice, this
problem can be avoided by assuming that after a certain
number of frames have been processed the first n match-
ing solutions can be considered correct and will thus not be
iterated upon. This approximation has led to a significant
decrease in processing time, while not affecting the final
result’s precision.

5.1. Cube sequence

The synthetic sequence is composed by 55 frames of
a rotating and translating cube. The matching candidates
consist of the edges of the cube and three equidistant points
are selected on each of the cube’s edges as the points to be
tracked. No noise has been added to this sequence and its
principal objective is to validate our method.

Note that the cube’s edges are the only contours present
in the image: traditional photometric methods would suf-
fer from the aperture problem when dealing with points on
these straight lines. It should be emphasized that there are
corners in the image (the vertices of the cube!); however,
in order to prove our point, the features are selected so that
they are not in the vicinity of these corners. In fact, due to

the geometric nature of the algorithm corners and generic
contour points are treated equally.

In each frame, the match for the 36 inliers is found
among ca. 670 candidates. Consequently, each frame
would require the solution of a linear program with over
24000 variables. As explained previously, using a priori
knowledge reduces the dimensionality of the problem.

5.2. Hotel sequence

This sequence is 30 frames long and contains images of
a moving toy house. 22 points (inliers) have been chosen
from the contour lines of the first image. As in the ’Cube’
sequence, these points have been chosen in such a way that
they reside, as much as possible, on straight lines. Since
this sequence has been built from real images, a limited
amount of noise is associated to each observation. The to-
tal number of matching candidates for each frame is ca.
11000 points, resulting in 242000 variables. Once more,
knowledge on the maximum amplitude of movement be-
tween frames is used to radically reduce dimensionality.
Due to the absence of ground truth, initialization for this
sequence has been provided by manual matching of the fea-
ture points.

5.3. Results

The following images in the sequence use the result of
the preceding match for initialization, as described in sec-
tion 3.3. The algorithm is run for the two above mentioned
sequences, that present the disparity between consecutive
frames as detailed in the table below:

’Cube’ ’Hotel’
min max min max

0.13 pxl 1.64 pxl 0,10 pxl 1,51 pxl

Note that in either sequence the outliers are placed very
near to the feature points. It is thus plausible that the match-
ing algorithm chooses a neighbouring outlier over a feature
point on some occasions, without this implying an incor-
rect match.

As can be seen in Figures 3, 4, 6 and 7, all features are
tracked with a diminute error. In the case of the ’Cube’
Sequence the mean error of the feature points in relation
to the theoretical values was always below one pixel. A
null error was not achieved due to discretization errors that
do not allow the pixel coordinates to coincide exactly with
the theoretical values. For the ’Hotel’ sequence no ground-
truth exists; however, it is possible to assertain by visual
inspection that the feature points move solidarily with the
object.



0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

Figure 3. 1st frame of the ’Cube’ Sequence

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

Figure 4. 55th frame of the ’Cube’ Sequence

6. Future work

The present version of our algorithm is limited by the
fact that the disparity between images has to be small so
that an adequate initialization in the subsequent frame is
achieved. In this paper, the result of the previous matching
process is used and the new initialization vector is extrapo-
lated by assuming a smooth movement. Better results can
be achieved by using more sofisticated ways to extrapolate
future movement and thus calculate initialization vectors
that are valid over larger disparities.

The fact that the initial set of features has to be visible
over the whole sequence is an issue that becomes problem-
atic if the sequence presents a very large movement. Even
for small problems, this fact imposes restrictions on the
choice of image points to match. Handling occlusions is
at the moment still an open issue.

The algorithm can be made to run radically faster by
subdividing the simplex problems so that only a subset of
the image points are matched at a time. As the simplex
algorithm is typically solved in polinomial time, process-
ing n d-dimensional problems is usually much faster than
processing a single (n × d)-dimensional problem.

5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

1.5

Figure 5. ’Cube’ Sequence: Mean Error per
frame in pixels

Figure 6. 1st frame of the ’Hotel’ Sequence

Figure 7. 30th frame of the ’Hotel’ Sequence

Our algorithm is presently constrained to use images
obtained from affine cameras. The extension to projec-
tive cameras might be obtained using Heydens work in [3].
However, an analysis on the convergence properties of the
altered method will have to be performed in order to ensure
that performance is not affected.



7. Discussion and conclusions

We have presented a method that is capable of matching
image points extracted from generic contour points, with-
out resorting to corners in the image. This algorithm is able
to calculate the match of several images, thus optimizing
the result in the whole image sequence.

Our algorithm is able to cope with a high percentage of
outliers without any significant decrease in performance.
We have run experiments with a high number of points,
demonstrating that our method is computationally feasible.
Reconstruction performance visually demonstrates the ca-
pabilities of this method.

8. Appendix: Calculation of c

From (5), we can simplify the calculations by reorder-
ing Wf so that the frame that is to be aligned occupies the
last pair of rows. We will consider the submatrix of the re-
maining rows Wc as constant, which allows us to disregard
all of its elements since they do not depend on Pk . This
allows considerable simplification of the calculations to be
made and, since only constant terms are eliminated, does
not affect the value of P ∗

k .

Z0 =
[

0[2f×2f ] 1[2f×2]

1[2×2f ] 1[2×2]

]
•
[

WcW
T
c WcP

T
k wT

k

wkPkW T
c wkPkP T

k wT
k

]
(13)

The ith term of the cost function in (7) (which corresponds
to the minimization of the ith eigenvalue of Z) can then be
written as:

qT
i Z0qi =


q1
i
...

q2f+2
i




T [
0[2f×2f ] WcP

T
k wT

k

wkPkWT
c wkPkPT

k wT
k

] 


q1
i
...

q2f+2
i




(14)
Note that this calculation need be performed 2f −

2 times, corresponding to the number of non-dominant
eigenvalues that have to be minimized in order to obtain
a rank-4 Z .

In order to present this problem as a linear program, we
first divide qi in the following manner (the subscript i on q
will from now on be dropped in order to simplify notation):

q =
[

qT
1[2f×1]

qT
2[2×1]

]T

(15)

Using (15) we can develop (14) as follows:

qT Z0q = 2
pk∑

m=1

p0∑
n=1

(
2∑

i=1

qT
2i

wkim

)(
2f∑

j=1

(Wcjn)T q1j

)
Pkmn

+
pk∑

m=1

p0∑
n=1

(
2∑

i=1

(
wkmi

)T
q2i

)2

Pkmn

(16)
Note that in the second term we take advantage of the

fact that PkPT
k is a diagonal matrix. We can express (16) as

a function of x = vec(P ). As a consequence, (16) assumes
the form c.x, where c is given by:

ci = 2
[(

qT
1 Wc

) ⊗ (
qT
2 wk

)]
+

1[1×p0] ⊗
[(

wT
k q2

)T • (
wT

k q2

)T
] (17)

The complete c is given by the sum of all ci.

References

[1] C. Branco and J. Costeira. A 3d image mosaiching system
using the factorization method. In IEEE ISIE, Pretoria, South
Africa, July 1998.

[2] H. Lütkepohl. Handbook of Matrices, John Wiley & Sons
1996.

[3] A. Heyden, R. Berthilsson and G. Sparr. An iterative factor-
ization method for projective structure and motion from im-
age sequences. Image and Vision Computing(17), 13(1), pp.
981-991, November 1999.

[4] V. Kolmogorov and R. Zabih. Visual correspondence with
occlusions using graph cuts. In Proc. ICCV, pp. 508-515,
July 2001.

[5] B. Lucas and T. Kanade. An iterative image registration tech-
nique with an application to stereo vision. In Proc. of the 7th

International Joint Conference on AI, 1981.

[6] J. Maciel and J. Costeira. A Global Solution to Sparse Corre-
spondence Problems. IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 25(2), February 2003.

[7] R. Oliveira, J. Costeira and J. Xavier. Optimal Point Corre-
spondence of Contour Points Through the Use of Rank Cos-
ntraints. In Proc. CVPR, June 2005.

[8] C. J. Poelman and T. Kanade. A paraperspective factorization
method for shape and motion recovery. In Proc. ECCV, pp.
97-108, August 1994.

[9] P. Sturm and B. Triggs. A factorization based algorithm
for multi-image projective structure and motion. In Proc.
ECCV,pp. 709-720, April 1996.

[10] C. Tomasi and T. Kanade. Shape from motion from im-
age sreams under orthography: a factorization method.
IJCV,9(2):137-154,November 1992.


