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Learning Object Affordances:
From Sensory Motor Coordination to Imitation

Luis Montesano  Manuel Lopes Alexandre Bernardino éJBantos-Victor

Abstract—Affordances encode relationships between actions,
objects and effects. They play an important role on basic cognitier
capabilities such as prediction and planning. We address the
problem of learning affordances through the interaction of a
robot with the environment, a key step to understand the
world properties and develop social skills. We present a general
model for learning object affordances using Bayesian networks

integrated within a general developmental architecture for socia R—— J
robots. Since learning is based on a probabilistic model, the

approach is able to deal with uncertainty, redundancy and

irrelevant information. We demonstrate successful learning in _ _

the real world by having an humanoid robot interacting with Inputs | outputs functlon
objects. We demonstrate the benefits of the acquired knowledge (0, 4) L Predict effect

(O,FE) A Action recognition & planning

in imitation games. : — -
(A E) (0] Object recognition & selection

Fig. 1. Affordances as relations between (A)ctions, (Otsi@nd (E)ffects,
I. INTRODUCTION that can be used to address different purposes: predict utmme of an

. action, plan actions to achieve a goal or recognize objectctions.
Humans can solve many complex tasks on a routine basis,

e.g. by selecting, amongst a vast repertoire, the actions to

exert on an object to obtain a certain desired effect. A paint From the perspective of robotics, affordances are extrgmel
knows which colors and painting technique to use to produggwerful since they capture the essential world and object
a certain visual impression, in the same way as a basketQaperties, in terms of the actions the robot is able to perfo
player knows how to throw a ball with the exact trajectory anfihey can be used to predict the effects of an action, to plan
spin to introduce it in the basket. actions to achieve a specific goal or to select the object to
In this paper, we discuss such human skills in the contexioduce a certain effect if acted upon in a certain way.
of the long-term vision of building (humanoid) robots calgab By extending the concept further, affordances also play an
of acting in a complex world and interacting with humans anghportant role for interacting with other agents, sinceythe
objects in a flexible way. What knowledge representations @llow the recognition of actions and can be used, for ingtanc
cognitive architecture should such a system require to ke ay imitation [2]. By observing the actions, states and effeaf
to act in such unpredictable environment? How can the systeher individuals (human or robots), an artificial system ca
acquire task or domain-specific knowledge to be used in novegtrieve a tremendous amount of knowledge [3]. Learning by
situations? imitation is one of the motivations of our affordance system
To help answering these questions, we propose a methaéd we will show how it can lead to imitation-like behaviors.
ology that draws inspiration from the concept of affordance There are two points that should be stressed now regarding
introduced by J.J.Gibson in his seminal work [1]. He definesffordances. Firstly, one intrinsic characteristic obaffances
affordances as action possibilities available in the emvitent s that they result from the (ecological) exploratory iaigion
to an individual, thus depending on its action capabilities between the robot and the environment, thus depending both
Affordances define the relation between an agent and @s the world and the agent’s motor and perceptual capa&siliti
environment through its motor and sensing capabilitieg. (e Secondly, the concept of affordances requires a certairbaum
graspable, movable or eatable), as illustrated in Fig. k. Fof elementary actions to be defined and functional. As wd shall
instance, humans can grasp a cup or sit on a sofa, but not \dee later, this means that the system must first know how to
versa. Dogs can sit on a sofa but cannot grasp a cup. perform a number of actions and develop some perceptual

capabilities before learning the affordances.
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TABLE |

LEARNING PHASES OF THE DEVELOPMENTAL APPROACH between motor and perceptual skills, resulting in an exafgm
Sensory-Motor| 1: Learn basic motor SKilis large dimension search problem. Instead, affordances ean b
Coordination | 2: Develop visual perception of objects more appropriately defined once the robot has already ldarne
3 Perception of effects and categorizatipn a suitable set of elementary actions to explore the world.
World 4: Improve motor skills We adopt a developmental approach [18], [19], where the
Interaction 5: Learn object affordances . . . . cep .
6: Prediction and planning skills robot acquires skills of increasing difficulty on top of pi@ys
[ imitation [ 7: Perform imitation games ] ones. As newborns, the robot should “start” with a minimal

subset of core (phylogenetic) capabilities [20] to boaistr
learning mechanisms that, through self-experimentatioth a
a living being and its environment [1]. Gibson argues thét thinteraction with the environment and other humans, would
relation is shaped by the perceptual and motor abilitiedhef tprogressively lead to the acquisition of new skills.

agent. Hence, affordances represent what the elementnpres We follow the developmental roadmap proposed in [21] and
in the environment afford to the agent. This very generaktend it to include the learning and usage of affordancésein
concept was originally applied to entities such as surfac@®rld interaction phase. This framework considers threenma
(ground, air, water) or their frontiers. From a psycholadic stages in a possible developmental architecture for huidano
point of view, there has been a lot of discussion to estallishobots: (i) sensory-motor coordination; (ii) world intetin;
definition or model of affordances (see [4] for a brief reiew and (i) imitation, (Table I). In the sensory-motor coardtion
Other authors have shown the presence of affordances dige, the robot learns how to use its motor degrees of freedo
comparing percepts among different people [5], measuriagd the coupling between motor actions and perception. In
response times to tasks elicited by specific object ori@mst the world interaction phase, the robot learns by explorimg t
[6] or perceiving heaviness [7]. Unfortunately, there isldi effects of its own actions upon elements of the environmant.

evidence on how humans learn affordances. the imitation phase, the robot learns by observing and tmga
From the robotics standpoint, affordances have been maiglher agents.

used to relate actions to objects. Several works use afioeta  Affordances are central in the world interaction phase. At

as prior information. A computational, cognitive model fokhis stage, the robot has already developed a set of peateptu
grasp learning in infants was proposed in [8]. The afforéan@nd motor skills required to interact with the world. We
layer in this model provides information that helps to perfo introduce a general model for affordances learned by unsu-
the action. Affordances have also been used as prior distrithervised self exploration and that includes the effectshef t
tions for action recognition in a Bayesian framework [9] or taction on the object. Affordances are modeled with Bayesian
perform selective attention in obstacle avoidance tass [1 networks (BN) [22], a general probabilistic representatio
Several works have investigated the problem of learnirg dependencies. We formulate the problem as a structure
affordances and their subsequent application to diffeiesks. |earning algorithm, where affordances are encoded in the
In [11], the robot learned the direction of motions of difat probabilistic relations between actions and perceptse(abj
types of objects after poking and used this information atfaatures and effects). This allows us to take advantageeof th
later stage, to recognize actions performed by others.di@r general methods proposed in the machine learning community
used the learned maps to push objects so as to reproduceféfgearning, inference and planning. Indeed, BN provides a
observed motion. A similar approach was proposed in [1Zingle framework for learning and using affordances.
where the imitation is also driven by the effects. Howeuegyt  we used the humanoid robot Baltazar (Fig. 3) to validate
focus on the interaction aspects and do not consider a dengjig approach. We conducted several experiments to ilkestra
model for learning and using affordances. The biologicalife capability of the system to discover affordances aagexti
inspired behavior selection mechanism of [13] uses C“HEJET with manipu|ati0n actions (eg grasp, tap and touch),iaﬁm
and self organizing feature maps to relate object invasitmt to objects with different properties (color, size, shap)e
the success or failure of an action. All the previous apgteac effects of these actions consist of changes perceived in the
learn specific types of affordances using the relevantmér sensor measurements, e.g. persistent tactile activatiora f
tion extracted from their sensor channels. A more complej@asp/touch, and object motion for a tap.
solution has been recently proposed in [14] where the legri Our results show how the learned network captures the
procedure also selects the appropriate features from af set@uctural dependencies between actions, object feaamés
visual SIFT descriptors. The work in [15] focuses on theffects. The model is able to distinguish the relevant priigz
importance of sequences of actions and invariant pereeptiaf the objects and discard those that do not influence action
to discover affordances in a behavioral framework. Fil',]a”butcomes_ This ‘feature-selection’ aspect of the streckemrn-
based on the formalism of [16], a goal-oriented affordanggg method is fundamental in planning because task exacutio
based control for mobile robots has been presented in [1i.often linked to object properties and only to a lesserrexte
Previously learned behaviors suchtesverseor approachare to objects themselves. The learned model is then used to

combined to achieve goal oriented navigation. predict the effects of actions, recognize actions perfarme
by a human and to play simple interactions games. These
B. Our Approach games are driven by the observed effects of the human action,

Learning affordances from scratch (without assumingnd exploit knowledge contained in the affordance network
known models) can be overwhelming, as it involves relations obtain the same effects. In this sense, imitation is not



limited to mimicking the detailed human actions. Rather, it
is used in a goal directed manner (emulation), as the robc
may choose a very different action (when compared to that o
the demonstrator) provided that its experience indicates t
the desired effect can be met.

In conclusion, the main contribution of this paper is a
model for learning and using affordances in the context ot
a developmental framework for humanoid robots. The main
characteristics of the proposed model a('@:it captures the Fig. 2. Examples of actions as seen by the robot. (a) graspithgty tapping.
relations between actions, object features and effe@ts;
it is learned through observation and interaction with the

affordance;(iv) it provides a common (seamless) frameworkence of particular classes of objects (colors, shapess)iz
for learning and using affordances; arith) allows social ang effects (motions) in the environment.

(b)

interaction by learning from others. In parallel, the basic motor skills allow the robot to disepv
the relation between its actions and its proprio-percegtio
C. Structure of the paper Usually, this correspondence between perception andraistio

called a Sensory-Motor Map (SMM) and it can be interpreted

_ The paper is organized as follows. Section Il presents theterms of direct/inverse kinematics of robotic manipotat
first level of the developmental architecture, which dealfiw |,yerse models are used to control the robot while direcsone
sensory-motor coordination, learning of elementary astioggpye for prediction purposes.

and basic perceptual skills. Section Il describes our@@Et  Next we describe the different modules that allow the robot

for learning and modeling affordances using Bayesian ngf 5.q,jire the following capabilitiegi) basic motor skills(ii)

works. This corresponds to the second developmental stage, o perception of objects ar(dii) perception of effects.
where learning about the world is the primary motivation.

Section IV shows how several imitation-like behaviors can b

formulated as decision problems over the learned affo®ng,  Basic motor skills

model. The entire approach is validated in Section V through ) ]
experimental tests with our humanoid platform, illusmgti Newborns have a series of reflexes and responses that drive
the advantages of affordance based knowledge representafn@ir future mastering of motor abilities. However, at Ioirt

Section VI draws some conclusions and establishes directidhey are still too coarse to be functional and need to develop
for future work. during the first months of life. Similarly, we consider that

the robot starts with a predefined set of core motor actions
M = {m;}, whose parameter§\,+)) must be adjusted by
Il. DEVELOPING BASIC SKILLS self-experience, i.e. by autonomous exploration of itsanot

In this section, we present the robot phylogenetic capabiind sensory capabilities. A generic description for the ehod
ties and the skills acquired during the first stage of develofii 1S
ment, Sensory-Motor coordination. These motor and percep-

tual skills, developed prior to affordance learning, pdavthe O = m; (0%, y, \, 1)) (1)
abstraction layer that allows the robot to start interagtith
the world. where® represents the controlled variabl€¥; is the final ob-

We consider that each skill develops on top of another orje¢tive andy are the available proprioceptive measurements of
following a developmental perspective. At the bottom lewed  the robot. Parameteis are related to the kinematics/dynamics
have pre-programmed skills: simple visual segmentatiath aaf the robot. In particular, SMMs are used to relate obser-
categorization abilities for characterizing objects affeécts vationsy to robot kinematics and dynamics. Parametgrs
(based on color, shape, motion and orientation) and motigpend on the task and serve to control its execution, i.e.
capabilities (near-chaotic motion and controller strues). desired speed, energy criteria, posture. They can be tuned
Although innate, they are not fully operational and theyl stiduring affordance learning (refer to Section V, Fig. 7), but
require some learning [23]. For instance, the structurenef tthey are frozen by the system during the initial learningggha
controller is predefined, but only after learning, and whle t  In this work we are focusing on object manipulation actions
complete development of the related visual capabilitiés, like grasping(m;), tapping(mz) and touchingms) (see Fig.
becomes fully functional. 2). We consider each of these tasks consisting of three phase

From pre-programmed skills, perception develops in ordé} bringing the hand to the field of view in an open-loop
to adapt to the structure of the world. Instead of dealifi@shion; (ii) approaching the object using visual servaamng;
directly with the raw sensor data, the robot has some filtgfi) actually grasping, tapping or touching the object.€Th
that simplify the data processing and provide higher levelho former phases are learned by self-experience (see [21]
information such as motion detection or color segmentatioior further details), while the latter is pre-programmect da
On top of this, the system learns in an unsupervised manmeactical limitations of our current robotic platform.



B. Visual Perception of Objects

Vision is the most complex perceptual system in humans,
and the least developed at birth. Although infant perceptio
and cognition has been subject of extensive research in d
velopmental psychology, there is still not much consensus o §
the particular developmental stages of the young infant. [24
Recent work also suggests that infants are able to starifigrm
perceptual categories based on correlation informatioheat
age of 4 months [25].

In this work, we assume the system has simple segmentatio
and category formation capabilities already built-in . Eog

sake of experimental simplicity, we have constructed aypla _ o
Fig. 3. Experimental Setup. The Robot’s workspace consistswhite table

ground’ environment as shown in Fig. 3. In this enVironmenz;nd some colored objects with different shapes (Left). Qlache table are
the robot plays with simple colorful objects over a whiteléab represented and categorized according to their size shapeddor, e.g. the
and observes other people playing with the same objecB§!l and 'square’ class (Right).

Fast techniques like background or color segmentation are

employed at this stage to allow the robot to individuate and

track objects in real-time. Along time, the robot collects) the sensory space. Obviously, we have to assume that the

. : ; ) . . . . motor and perceptual capabilities of the agent are such that
information regarding simple visual object propertiekeli : . . . -

. . . . the same action applied to the same object will have similar
color, shape, size, etc. Figure 3 illustrates the robot&swvi

; ; . . effects in average, for instance, all successful grasgshawle
of several objects, together with their color segmentati H . )
CL e pressure sensors persistently activated.

and extracted contour. After some time of interaction wit . .
. . : .. All effects are processed in the same way. When the action
the objects, the robot is able to group their properties int

. . . s? rts, the agent observes its sensory inputs during aircerta
meaningful categories. The set of visual features employ . . . .
. . : .. ’time window, that depends on the action execution time and
here consist on color descriptors, shape descriptors aadisi

the image). The color descriptor is given by the hue histgr the effects duration, and records the corresponding irdtiom
. 7 : : aflow. We then fit a linear model to the temporal information
of pixels inside the segmented region (16 bins). The sha fd represent the observed effects by the inclination aasl bi
descriptor is a vector containing region based measurey,nergpthe regression. For velocities (object, hand and otjec)
as follows: . . . the regression is made on the sequence of image velocity
« Convexity - ratio between object area and convex hylly s only the inclination is used since the bias only reflec
area, , , , , the absolute position in the image. For the contact infoionat
« Eccentricity - ratio between object minor and major axegye consider only the bias (offset) of the linear regresshat t

o Compactness - ratio between object area and sq”ab‘?\%s a rough measure of the duration of contact.
external contour perimeter;

« Circleness - ratio between object area and the area of the

minimum enclosing circle;

. Squareness - ratio between object area and the area dp this section, we address the acquisition of the affordanc
the minimum enclosing rectangle; (second phase of Table I). In the previous phase, the robot

In the catedory formation phase. color. shape and Siczjeveloped a set of skills that allows it to reason in a more
gory P ' ' b Bstract level than joint positions or raw perceptions. fitmt

descriptors are clustered into independent categorieis Tﬁas now available a set of actions to interact with the world

allows us to make predictions on previously unseen objecésnd is able to detect and extract categorical informatiomfr

but with some properties whose affordance has already betﬁg objects around it. We pose the affordance learning grobl
learned. . . . " .
at this level of abstraction where the main entities areoasti
) objects and effects.

C. Perception of Effects We use a probabilistic graphical model known as Bayesian

In our framework, effects are defined as salient changietworks [22] to encode the dependencies between the ac-
in the perceptual state of the agent that can be correlatazhs, object features and the effects of those actionsKgee
to actions. For instance, upon interacting with object® tH). Such a representation has several advantages. It alisws
robot may experience sudden changes of object position @odake into account the uncertainty of the real world, eesod
velocity, and changes on tactile information related totaon some notion of causality and provides a unified framework for
Similarly to what was carried out for object propertieseets learning and using affordances. We next describe briefly the
are grouped into categories with unsupervised learninig-tecepresentation, inference and learning concepts using®N a
nigues. For example, after tapping an object, its velocia m show how to apply them to our affordance problem.
be null, small or large, depending on the object charatiesis A BN is a probabilistic directed graphical model where the
After some time experimenting with objects and collectingodes represent random variablEs= { X, ..., X,,} and the
information about the effects of actions on objects, thenagglack of) arcs represent conditional independence assongpt
forms categories of effects by grouping those that are cloB&ls are able to represent causal models since an arc from

Ill. AFFORDANCE MODELING AND LEARNING



The difference between object features and effects is Heat t
former can be acquired through simple observation, whereas
the latter require interaction with the objects. Thus, teting
the effects correspond to the first stage of the world intemac
phase and preludes the learning of the affordances.

Our final objective is to discover the relations between the
random variablesX representing actions, features and objects
(see Fig. 4). To do this, the robot performs an action on an
@ oo @ object and observes the resulting effects. By repeating thi
procedure several times, the robot acquires a seV dfials
(b) D = 2"V (see Fig. 5). Let us assume for the moment that we
Fig. 4. Bayesian network model to represent the affordarfe$\n example know the dependencies, that is, the structure of the network
of the pr.oposed model using color, shape and size informatinthe object representing affordances. Given the discrete represemtat
features; and motion and contact information as effects. @)e@c model . . . .
where the nodes represent the actiohsthe object features available to the@Ctions, features and effects, we use multinomial distiobs
robot F'(1)...F(n) and the effects obtained through the actiéh@)...E(m). and their corresponding conjugate, the Dirichlet distiiny
to model the CPD®(X; | Xpq(x,),0:) and the correspond-
ing parameter priorg(9;). According to [27], the marginal
X; — X; can be interpreted a¥; causesX; (see [26]). The |ikelihood for a nodeX; and its parents givel is:
joint distribution of the BN decomposes in the following way

N
n 1:N 1:N n n
p(a; Tpy(a = p(z}" | Tpacsy» 03)|P(0;:)dO;
p(Xla"'aXn) = Hp(Xz | XP(L(X,L')79'L-) (2) ( | Paf Z)) /[71:[1 ( ! ‘ Pa(=:) 1)] ( ) '
=1
| X [Xpa(xl
where X p,(x,) represents the parents of nogé.e. the set of — H Lﬁ) H M
nodes with an arc towardX;. The conditional probability o Dleig +Nig) 22 I'(aijr)

distribution (CPD) p(X; | Xpg(x,),0:) of each node in ) . .

the graph depends on the parents,x,) and on a set where V;;;, counts the number of trials wittk; = j and
of parameterd);. If the conditional distributions and priorsXPa(x,) = k and Ni; = >, Ni;x and I" represents the
are conjugate, the conditional probability distributioasd 9a@mma function. The pseudo-counis;;, are the Dirichlet
marginal likelihood can be computed in closed form resgltiYPer parameters of the selected prior distributiorf,ofind

in efficient learning and inference algorithms. aij = ) iji- The marginal likelihood of the data is simply
the product of the marginal likelihood of each node,
_ 1:N _ 1:N 1:N
We now describe how to model the affordances using a PP 1 &) =P 1G) = Hp(xi | #Pata) (3)

Bayesian network and the information already learned by
the robot in the previous phase. A discrete random variabihere we have made explicit the dependency on the graph
A = {a;} models the activation of the different motor actionstructureG.
m; described in Section II-A. Each actian is parameterized
by the corresponding set of parametersas described in
Eq. 1. For instance, when approaching an object to perfo
a grasp the height of the hand with respect to the objectWe are interested in learning the structuge which is
or the closing angles of the hand are free parameters. ltastually an instance of a model selection problem. In a
important to note that from a sensory-motor point of viewg thBayesian framework, this can be formalized as estimatirg th
free parameters result in the same action. Hence, at thge stdistribution on the possible network structur@se G given
of development, the robot cannot distinguish between thethe data. Using the Bayes rule, we can express this distibut
since the differences will only appear when interactinghwitas the product of the marginal likelihood and the prior over
those objects. graphs,

The object properties and effects are also modeled using
discrete variables corresponding to the classes detegted b p(G|D) = np(D|G)p(G) 4
the robot (see Sections II-B and II-C). We dendig = . o .
(F,(1), ... Fy(ny)} and F, = {F,(1),..., Fo(n,)} the de- wheren = p(D) is a normalization constant. The prior term

scriptors extracted by each of the pre-processing modoles f (@) a{IJovas tto m::c?rp(t)r:ate pnc;r knofvxgildgg on possible sérut(;-
the agent itself and for the objeot respectively. Finally, let ures. niortunately, the numpoer o S IS super exponentia

E = {E(1), ..., E(n.)} be the effects detected by the roboYVith the number of nodes [28]. Thus, it is infeasible to explo
after execu’ting’] an ;ction. The set of nodesis formed by all the possible graphs and one has to approximate the full
the discrete variabled, F,, F, andE, X = {A, F,, F,, E}* solution. Markov Chain Monte Carlo (MCMC) methods have

been proposed to approximate the distributigty | D) [29].
1We represent a random variable by a capital lefteand its realizations In our case, this can be Important_ during the first stageseof th
by . learning to keep a set of alternative hypotheses.

'Am Learning the structure of the network



When there is enough data, an alternative solution is Fig. 1 simply by computing the appropriate distributions.
perform a local search to obtain the maximum likelihoo&or instance, the prediction of the effects when observing
structure given the data, an actiona; on given observed object featurg$ is just

. p(E | A =a;,F = f;). The query can combine features,
G* = argmazgp(G | D). ®) as:tiol]s and effects b(J)'zh as ogserzed information and as the
This is a local technique and, consequently, may converged@sired output.
a local minimum.

As the robot itself performs the actions, it usually obtains

information of all the variablesX;. There are several algo-

rithms to learn the structure of the network with complete after interacting with the objects, the robot is ready to
data (see [30] for a review). In our experimental validativ® start the social phase of its development. In this sectian, w
use MCMC to approximate the full distribution and the hillshow how to use affordances in this context. Imitation, as
climbing K2 algorithm [28] to explore the neighbors using word used in everyday language, refers to many different
a gradient technique. Although the model also allows thgshaviors. In biology, imitation aims to achieve the same
robot to learn by observation, there may be some missiggect by copying the actions of the demonstrator [34]. This
information. For instance, the action is not available aad hrequires to solve théody correspondence problef85], i.e.

to be inferred from visual measurements. In this case, the correspondence between the demonstrator’s actions and
learning task is much harder and several algorithms have bege |earner’s ones. Another common behavior is emulation. |
proposed such as augmented MCMC or structural EM [31]ihis case, the objective is to match the resulting effec.[34

Finally, it is important to consider causality. The prev8ouThis means that the learner can choose different actioms fro
learning schemes are able to distinguish among equival@i$se of the demonstrator as long as it achieves the same
classe$ So as to be able to infer the correct causal depegsyit. Indeed, for many authors [36] emulation is strongly
dency, it is necessary to use interventional data where W8ated with affordances. This is because affordancesigeov
fixed some of the variables to a specific value to disambiguaie means to relate actions to effects. In this paper we use
between graphs in the same equivalent class. imitation to refer to this last behavior.

In the case of a robot interacting with its environment, \ne describe next a set of interaction games between a
there are several variables that are actively chosen by Wi&nan and a robot. In each game, the robot observes a human
robot: the action and the object. These variables are aﬁtUEﬂerforming an action on an object. Then the robot is presente
interventional since they are set by the robot to their sj@eciyith another object or objects and has to perform a comatibl
values at each experience. Interventional data is cuyr@ml 5ction. More formally, leta? be the action performed by the
important research topic within BN learning a|9°”thmse(sedemonstratorjd the features of the object and resulting
[32]). Under the assumption of a perfect intervention of@ody, the effect. We pose the problem as a one step Bayesian
i, the value ofX; = x7 is set to the desired value and itgjecision problem where a reward (cost) functiodefines the
CPD is just an indicator function with all the probability 8% gpjective of the imitation task. The function to optimize is
assigned to this valug(X; | Xp,(x,),0:) = I(X; = x]). As
a result, the variabl&X; is effectively cut off from its parents
XpPa(x,)- <a*, 0" >=argmaxE [7'(ad, fd,ed,a,fo,eo)] (6)

———

IV. INTERACTION GAMES

acA,0e0

B. Parameter learning and Inference
\ﬂ('here f° ande® represent the object features and effects of

Once the structure of the network has been established, (t:” T . .
. . . actiona. The maximization is over the set of possible actions
parameterg; of each node are estimated using a Bayesian a

proach [30]. The estimated parameters can still be selignti A gnd pqs&ble objects. S ince the kn_oyvlgdge about the
. : : . . . action, objects and effects is not deterministic we needke t
updated on-line allowing the incorporation of the inforiaat

provided by new trials the expectatiorE [] over the reward function. In particular,

Since the structure of the BN encodes the relations betwetgﬁ probability of t_he effects of a particular action-oljec
. : arr, p(E | A,0), is encoded by the affordance network
actions, object features and effects, we can now compute B

distribution of a (group of) variable(s) given the valuestiud prese_nted In Section I.”' For the sake of s!mpllcny, N the
o remainder of the section we use the maximum likelihood

others. The most common way to do this is to convert the BN .~ - “" */ > .

. . X . estimation f¢ and e? of object features and effects. We

into a tree and then apply the junction tree algorithm [33] t0

compute the distribution of interests. It is important taeno present examples of simple imitation behaviors to illustra

that it is not necessary to know the values of all the varifabltehe previous fprmulatlon. L . :
a) Matching of effects::The objective of this behavior

to perform inference. . hi h ﬁ b d wh inale obi
Based on these probabilistic queries, we are now able '%o!° achieve the same effect as observed when a single object
ispresent. The reward function is

use the affordance knowledge to answer the questions

1, if Bf=e¢d

B = (G, ©) there exist another networkB’ = (G’,©’) such that they )
0, otherwise

define the same probability distribution.

)

2Two directed acyclic graph&’ and G’ are equivalent, if for every BN
r(ed) = {



whereé? is the most likely effect detected by the robot. Since
the reward does not depend on the object or the features, the
general expression simplifies to

Observe Approach’ Observe
Object Object Effects

a* = argmaz,rp(E' = é%a, f*) (8)

where f* are the features of the object. Fid 5. Experiments protocol. The obiect to interact withdkested "
. . . ig. 5. Experiments protocol. The object to interact withékested manually
b) Matching of effects and object selectiori?e now and the action is randomly selected. Object properties areraded in the

describe the more complex situation, where the robot hasitor to APPROACH transition when the hand is not occluding thbject.
select among a set of objeafd If we do not care about the The effects are recorded in the OBSERVE state. INIT moves érelfto a
object featuresf<, this simply requires the inclusion of thePredefined position in open-ioop.

available objects in the optimization,

Section II-A. When the reaching phase is completed, it per-

x % i _ d 0i
<a’,0" >=argmazrp(E* = &%a, f*) ©)  formed the selected actiograsp()) of tap()) or touch()))
a,0,€0 and finally returned the hand to the initial location. Durthg
where f°i represent the features of objegt action, the object features and effects are recorded.

c) Matching of effects and object featuresThe last ~ We used the data of these trials to implement steps 7
behavior adds information about the object features in ¢s¢ ¢ Of Table I. In this paper, we assume that the motor skills have
function. This allows the favoring of those objects similar already been learned as presented in Section II-A, for ldetai

the one used by the demonstrator. The cost function has fRéer to [21]. Next, we present the results for the different
following expression steps allowing the robot to evolve from basic sensory motor

coordination to imitation capabilities.

i s sin | 1, fEi=¢lAFi=fd
(e 15 1) _{ 0, otherwise (10) A. Discretization of perceptual information

Notice that one could weigh the features giving different This step plays an important role since it is the basis of the
rewards to different object features. For instance, if thgired discretization used in the affordance learning algorithins
object is a big ball, we could weigh the sizes as a functidr example, we used the three features described in Sektion
of their distance in the space of the measurements to @®or, shape and size. Each one is modeled mslmnensional
class model. Since the current observations of the robot &fctor space. Since our setup is clearly discrete, we applie
not deterministic, the expectation of Eq. 6 is now also takdhe X-meansalgorithm [37] to detect clusters in the space of

over the possible classes of each of the available objebts. Fach object feature and in the effects. For the continuaes fr
resulting expression is parameters\ of the actuators such as height of the wrist, we

discretized them with a predefined resolution.
. . . 2 o, o 2d It is important to note that the final objective is to learn
<a*, 0" >=argmazrp(E' = fa, f*)p(F” = f9) (11) the affordances given a set of available motor and perckptua
a,0,€0 skills, not to make a perfect object classification. Indetbd,
o > . clustering contains some errors due to different illuriorat
wherep(F* = f) represents the likelihood of the feature%onditions. For instance, the features of some objects were

of 0; being equal to the features’. Again this probability yisclassified and the affordance learning has to cope wish th
is computed based on the clusters of each dimension using fse.

metric on the space of each feature. Figure 6(a) shows the results of thkemeansalgorithm for

the object shape. The two resulting clusters separateyeasil
V. EXPERIMENTS balls from boxes based mostly on circleness and ecceptricit
In this section we present a set of experimental results descriptors. Figure 6(b) gives the equivalent result fdorso
illustrate the acquisition and usage of affordance knogded where the features vector is an histogram of e As the
We used Baltazar, a4 degrees of freedom humanoid tors@bjects have uniform color each histogram has only onergalie
composed by a binocular head and an arm. Using the mopmak. Finally for the unidimensional size, three clusteesew
skills of Section Il, Baltazar is able to perform three diffet enough to represent five different sizes of the objects ptede
actionsA = {a; = grasp(X\),as = tap(\), a3 = touch(\)} to the robot.
where represents the height of the hand in the 3D workspaceFigure 6(c) shows the classes of object velocities and
when reaching the object in the image. The robot applies @tentact patterns detected by the robot following the prooed
actions on a set of different objects with two shapes (box addscribed in Section 1I-C. Roughly, a grasp action resuked
ball), with four colors and three sizes (see Fig. 3). medium velocity (except in one case where the ball fell down
We recorded a set 00 experiments following the protocol the table), tap produced different velocity patterns depen
depicted in Fig. 5. At each trial, the robot was presenteth wibn the shape and size of the object and touch has small
a random object. Baltazar randomly selected an action avelocities. Also, contact information lasted longer foagp
approximated its hand to the object using the algorithms ahd touch actions than for tap ones. The combination of the
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Fig. 6. Clustering of object features and effects. (a) Shdgecription of the objects. Five features: convexity, atuegty, compactness, circleness and
squareness describe the objects. For the objects corgiderie experiments, box and balls, they can be clusteredrattcally. Different clusters are
represented by circles or plus signs. (b) Color histogrants thie corresponding clusters. Each bin relates to a given \Hilue. The clusters correspond to:
yellow, greeny, greeng andblue. (c) Clustering of object velocity and contact. For eacheobation grasp is represented ky tap by A and touch by
o.The vertical lines show the clusters boundaries for vejognd the horizontal line for contact.

SUMMARY OFVT::ELIEIS AND VALUES. The interest is in understanding the effects obtained by the
actions in an unsupervised manner.

SyrAf‘bO' De:Cthii(F;r:iO” Vf;‘;es N — The objective of the first experiment is to find the influence
H Height giscr%’tize% in 10 values of a free parameter of an action. The robot tries the action fo
c Color green ,green, yellow, blue different configurations of the free parameters. For a grasp
Ssh Sshif;ge g;‘gf%edium o these parameters are the angle of the joints of the fingers and
v Object velocity small. medium, big height of the hand. The former is used after reaching thecbbje
HV Hand velocity small, medium, big in the closing of the hand, whereas the latter is a free pasme
gi O*(J:J'eCt'ha”d velocity|| small, medium, big of the sensory motor map used to approximate the hand to

t ontact duration |- none, short, long the object. We used the K2 algoritAnto find the maximum
likelihood graph with a random starting point and BDeu fsior
05 [27] to give uniform priors to different equivalence classe
o4 E—L Figure 7(a) shows how the resulting network captures
R the dependency of the effects on these parameters. More
@ @ 203 interestingly, the CPDs provide the probability of prodwgi
g s different effects according to the values of the free patamse
@ T Figure 7(b) shows the estimated probability of each height
To1 conditioned on observing a long contact for medium and small
@ @ . objects (which is the sign of a successful grasp). Since big
0.18 0.2 0.22

e 28 2% %% objects cannot be grasped by the robot’s hand, all heiglves ha
(@) (b) zero probability for this class. Please note that the dhistibn

, _ _ _ . of Fig. 7(b) can be directly used to adjust the height of the
Fig. 7. Tuning the height for grasping a ball. (a) shows thpetielencies

discovered by the learning algorithm. The action and shap¢hfe example action for.dlﬁ_erent object sizes. . .
are fixed and color does not have an impact on the effects. Namslare ~ The objective of the second experiment is to show how

shown in Table II.(b) CPD of height given the robot obtainelbreg contact the robot is able to distinguish the effects of differentats
(successful grasp). and simultaneously select those features that are initegest
for this purpose. Also, we illustrate the differences betwe

different features produces patterns in the feature sp tthe MCMC estimation of the distribution of possible netwerk

) L . . and the maximum likelihood solution provided by the K2
are used to infer statistical dependencies and causamadnheTaI orithm. In both cases. we use BDeu priors for the araphs
Il summarizes the clustering results for the different ables 9 ' ' P grap

. i ; . . .and random initialization. Although, one can use condaion
and provides the notation used in the remainder of this@ecti . . o

independence tests to provide a rough initialization fothbo
algorithms, in our case we got similar results using rangoml

B. Affordances generated networks. For the MCMC algorithm, we use@0

Based on the previous descriptors of actions and its parar@MPles with & burn-in period of 500.
ters, features and effects, we present two different expenis I F|g.ur:es 8(a—dr2 ST]C’W the nelplivolrk compited by the K2
to illustrate the ability of the proposed model to capture tH!90rithm and the three most likely networks computed by
aﬁor_dances'_ We WOP'd like to remark that the robot does_nOEThe implementation of the algorithms is based on the BNT tooltmox
receive any information about the success or not of the &tioMatlab, http://bnt.sourceforge.net/.
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Fig. 8. This figure shows the affordance model estimated by tAealgorithm and the MCMC. Node labels are shown in Table [}). K& maximum
likelihood network; (b-d) three more likely networks obtaéhby the MCMC for the same data lengths and (e) posterior pilityaover graphs computed
by MCMC.

MCMC. For this particular case, there are no major diffeesnc -1500;
between both models. However, in the initial steps the MCMC
probability distributions represent the uncertainty oa itiodel
selection problem. When using longer datasets, the pratyabil
mass concentrates on a single group of very similar networks
but it still maintains a set of plausible networks that also
capture correct relationships between the variablesr&ig(e)
shows the posterior probability of all the sampled models.
Note that in the example the posterior probability of the
K2 model is lower than0.05 according to the distribution -4500 ‘ ‘ : : )
0 50 100 150 200 250
computed by MCMC. In some situations, due to its greedy # trials
approach we found that the K2 algorithm converged to a mOd?l 9 Marginal likelihood of the data given the learnedwmk as
that lacked some relevgnt relation such as the dependeﬁ Ynumber of trials increases. The vertical bars show thiange of the
on the shape of the object. Nonetheless, for most cases itk@hood.
K2 algorithm converges to a reasonable model even for little
data. The price to pay, when approximating the distribution
of possible networks, is a higher computational cost for tHeégure 10(b) shows the distribution of size after perforgnin
MCMC algorithm. a tap on a ball for different velocities. According to it,
Although there is no ground truth to compare the estimatéthall balls move faster than bigger ones and medium ball
networks, we see that color has been detected as irrelewaglocities are highly unpredictable (similar likelihoodr fall
when performing any action. Shape and size are importa@locities). This actually reflects the behavior of the otge
for grasp, tap and touch since they will have an impaduring the trials. For instance, the mean and variance of
on observed velocities and contact. In order to show thlee ball velocity fi[pizel/ frame], o*[pizel?®/ frame?]) were
convergence of the network toward a plausible model, w83.4,172.3), (34.3,524.9) and (17.5,195.5) for a small,
have estimated a network for different numbers of trialg. Fenedium and big balls, respectively.
each number, we have randomly created 100 datasets fronn order to further validate the model, we have performed a
the complete dataset, estimate the posterior over graphg udeave one out cross validation to evaluate the action rétogn
MCMC and compute the likelihood of the whole data for theapabilities of the network. For each trial, we computed the
most likely model. Figure 9 shows how the marginal likelidoonetwork structure and parameters using the other trials and
of the data converges as the number of trials increases. The MCMC algorithm. We then estimated the probability of
figure also indicates that, after 100 trials, the improvemeeach action given the object features and the object vglocit
of the likelihood of the data given more experiments is vefyand velocity and object-hand velocity. Since contact is a
small since the model already was able to capture the corrpobprioceptive measurement, it is not usually availableemvh
relations. On the other hand, for the K2 model of Fig. 8(a)bserving other’s actions. The most likely action was atrre
the marginal likelihood is 2775 which is lower than the oni# more than85% of the cases. The errors were due mainly
attained by the MCMC algorithm. to the absence of contact information which makes touch and
The actual dependencies are encoded in the multinomiiap very similar from the effects point of view for boxes. If
CPDs of each node. Based on the most probable hypothesigtact was included the ratio of correct recognition 9&%.
generated by the MCMC algorithm, we compute the maximum Summarizing, we have shown how the robot can tune its
likelihood parameters using also the same dataset. Toatalidmotor controllers through experimentation by including th
the network actually captures the correct dependencies, efects of its actions. Once this information is availabte,
compute some illustrative conditional probability distriions. starts establishing relationships between the featurethef
Figure 10(a) presents the predicted contact duration ohspgr objects and the resulting effects of its actions. The modal ¢
action for different sizes. It basically states that susfids then easily be used to perform simple inference, predictith
grasps (longer contact between the hand and the objganning. The learning depends on the motor and perceptual
occur more often with small objects than with bigger oneskills and is done in a completely unsupervised manner.el'her
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on the table (Fig. 11(c)). Notice that this is not a failunecei
it maximizes the probability of a successful grasp which is

gos| - the only requirement of the reward function. As described
“;{o.a ; Yo e in Section 1V, we can include object information within the
o gozf o7 reward function of the robot using Eq. 9. For instance, when
T . o the reward was modified to include a similar shape, the robot
S Conactaraion smel =R o selected the blue box instead (see Fig. 11(d)).
(a) (b)
Fig. 10. Examples of CPD for the learned network: (a) shpSt | S = VI. CONCLUSIONS

;ie,r;% r;egdrcct)snpésgto;gg)évtefs S;Eeogfcggééc(tb?iﬁg‘;g ?“‘fr‘zavirjs":waf This paper.addresses the Iegrning anq usage of affordances,
tap, Sh = ball), the CPD of the size of a ball given the action was a grash®- the relations between actions, objects and effects. We
for every possible value of velocity. used Bayesian networks as a general tool to capture these
TABLE Il dependencies and_ to infer_ causality relationships by ¢pkin
PROBABILITY OF ACHIEVING THE DESIRED EFFECTS FOR EcH acTion  @dvantage of the intervention of the robot and the temporal
AND THE OBJECTS OFFIG. 11(8). ordering of the events. Most previous works assumed that the
_ _ dependencies were known and learned a mapping between
BISEJ’ Eigftt'gl‘l %%%p é.azpo tg%cg\ pairs of actions and objects or used supervised approaches.
Yellow, small box | 0.00 | 0.06 | 0.00 Our affordance model does not assume any prior knowledge
on the dependencies and tries to infer the graph of the nktwor
directly from the exteroceptive and proprioceptive measur
is no notion of success or failure and the network may not bbeents. In addition to affordance learning, the model also
able to distinguish between non separable objects given #&l®ws the robot to tune the free parameters of the conteolle
used descriptors. However, it constructs a plausible mofielBy using Bayesian inference, the robot is able to predict
the behavior of the different objects under different awgio the value of the actions, objects features or effects udieg t

that can readily be used for prediction and planning. available information at a given point in time. Planning and
basic imitation behaviors are also posed as a Bayesianatecis
C. Interaction games problem to maximize a reward function.

: . . . We have integrated the previous model within a develop-
Finally, we present results on basic interaction gamesgusin

the affordance network. In this case. the robot observesmaental architecture where the robot incrementally dewelop
erson performing an ac.tion ona iven,ob'ect Then. usi o'rt1$ skills. We argue that affordances are the bridge between

P peric gane : g Ject. » USIEY | sensory-motor coordination and world understanding arid im

of the functions described in Section IV, it selects an amt'qcation Affordances not only describe agent-object inttioas

and an object to imitate (emulate) the human. Figure 11 tkepi . . ) .
. . ut they also provide an interpretation of the observedacti
the demonstration, the objects presented to the robot and | . ) \
. . ) : in terms of equivalent effects in the robot’s body, allowihe
selected action and object for different reward functions.
:rjﬁ)lbOt to emulate others.

We used two different demonstrations, a tap on a small b Based on the proposed framework, there are plenty of

resulting in high velocity and med'“”.‘ ha}nd—object d'SFanC%Hportunities for future research. Biological systemseltgy
and a grasp on a small square resulting in small velocity an

small hand-object distance. Notice that contact inforarats many of their different skills in parallel. We are now inviest
not available when observiﬁg others gating how to dynamically incorporate new robot capaletiti

The objective of the robot is to obtain the same observ&%ﬁt}fgsﬁ] tﬂ:a Vﬁgrlgsggoévézcé?iahn ditrZitllelaé r;:g%hz)lgoﬂtgg Z‘
effects. The first situation (Fig. 11(a)) is trivial as onipthas 9 prop y 9

. . . . vation of other agents, it is necessary to develop mechanism
a non zero probability of producing a high velocity. Hente, t : .
N : ; .. to update the knowledge sequentially and to deal with new
imitation function selected a tap on the only object avadab

In Fig. 11(b) the demonstrator performed the same actian, t? C;toir:]il3(;ee:f:r%tst')rzlln;ély’e::ferr?cg;rlelzé T::iezrifrch:ijtl)rnes
the robot had to decide between two different objects. Table P P q

Il shows the probabilities for the desired effects giver th
six possible combinations of actions and objects. The robot

selected the highest probability and performed a tap on thHe] J. J. GibsonThe Ecological Approach to Visual PerceptionBoston:
ball. Houghton Mifflin, 1979.
. . . . . l{2] M. Lopes, F. S. Melo, and L. Montesano, “Affordance-bhs$mitation
Figures 11(c) and (d) illustrate how including the objec learning in robots,” iNEEE/RSJ Intelligent Robotic Systems (IROS'07)
features in the reward function produce different behavior  USA, 2007.

After observing the grasp demonstration, the robot had tl S. Schaal, “Is imitation learning the route to humanoidatsty Trends
in Cognitive Sciencesol. 3(6), 1999.

select among three objects: .yeHOW big ba”’. ye!IOW Small[4] A. Chemero, “An outline of a theory of affordancesEcological
ball, blue small box. In the first case the objective was to Psychologyvol. 15, no. 2, pp. 181-195, 2003.

obtain the same effects (Eq. 8). The probability for each off] J- Konczak, H. Meeuwsen, and M. Cress, “Changing affocea in
stair climbing: The perception of maximum climbability in youagd

the objects i9.88, 0.92 and 0.52 respectiveh/ and the f(_)bOt older adults,"Journal of Experimental Psychology: Human Perception
grasped the yellow small ball even if the same object is also & Performance vol. 19, pp. 691-7, 1992.
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