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Abstract—Affordances encode relationships between actions,
objects and effects. They play an important role on basic cognitive
capabilities such as prediction and planning. We address the
problem of learning affordances through the interaction of a
robot with the environment, a key step to understand the
world properties and develop social skills. We present a general
model for learning object affordances using Bayesian networks
integrated within a general developmental architecture for social
robots. Since learning is based on a probabilistic model, the
approach is able to deal with uncertainty, redundancy and
irrelevant information. We demonstrate successful learning in
the real world by having an humanoid robot interacting with
objects. We demonstrate the benefits of the acquired knowledge
in imitation games.

I. I NTRODUCTION

Humans can solve many complex tasks on a routine basis,
e.g. by selecting, amongst a vast repertoire, the actions to
exert on an object to obtain a certain desired effect. A painter
knows which colors and painting technique to use to produce
a certain visual impression, in the same way as a basketball
player knows how to throw a ball with the exact trajectory and
spin to introduce it in the basket.

In this paper, we discuss such human skills in the context
of the long-term vision of building (humanoid) robots capable
of acting in a complex world and interacting with humans and
objects in a flexible way. What knowledge representations or
cognitive architecture should such a system require to be able
to act in such unpredictable environment? How can the system
acquire task or domain-specific knowledge to be used in novel
situations?

To help answering these questions, we propose a method-
ology that draws inspiration from the concept of affordances
introduced by J.J.Gibson in his seminal work [1]. He defined
affordances as action possibilities available in the environment
to an individual, thus depending on its action capabilities.

Affordances define the relation between an agent and its
environment through its motor and sensing capabilities (e.g.
graspable, movable or eatable), as illustrated in Fig. 1. For
instance, humans can grasp a cup or sit on a sofa, but not vice
versa. Dogs can sit on a sofa but cannot grasp a cup.
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Fig. 1. Affordances as relations between (A)ctions, (O)bjects and (E)ffects,
that can be used to address different purposes: predict the outcome of an
action, plan actions to achieve a goal or recognize objects or actions.

From the perspective of robotics, affordances are extremely
powerful since they capture the essential world and object
properties, in terms of the actions the robot is able to perform.
They can be used to predict the effects of an action, to plan
actions to achieve a specific goal or to select the object to
produce a certain effect if acted upon in a certain way.

By extending the concept further, affordances also play an
important role for interacting with other agents, since they
allow the recognition of actions and can be used, for instance,
in imitation [2]. By observing the actions, states and effects of
other individuals (human or robots), an artificial system can
retrieve a tremendous amount of knowledge [3]. Learning by
imitation is one of the motivations of our affordance system
and we will show how it can lead to imitation-like behaviors.

There are two points that should be stressed now regarding
affordances. Firstly, one intrinsic characteristic of affordances
is that they result from the (ecological) exploratory interaction
between the robot and the environment, thus depending both
on the world and the agent’s motor and perceptual capabilities.
Secondly, the concept of affordances requires a certain number
of elementary actions to be defined and functional. As we shall
see later, this means that the system must first know how to
perform a number of actions and develop some perceptual
capabilities before learning the affordances.

A. Related work

Gibson used the concept of affordance to describe the
relation (including representation issues) established between
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TABLE I
LEARNING PHASES OF THE DEVELOPMENTAL APPROACH.

Sensory-Motor 1: Learn basic motor skills
Coordination 2: Develop visual perception of objects

3: Perception of effects and categorization
World 4: Improve motor skills

Interaction 5: Learn object affordances
6: Prediction and planning skills

Imitation 7: Perform imitation games

a living being and its environment [1]. Gibson argues that this
relation is shaped by the perceptual and motor abilities of the
agent. Hence, affordances represent what the elements present
in the environment afford to the agent. This very general
concept was originally applied to entities such as surfaces
(ground, air, water) or their frontiers. From a psychological
point of view, there has been a lot of discussion to establisha
definition or model of affordances (see [4] for a brief review).
Other authors have shown the presence of affordances by
comparing percepts among different people [5], measuring
response times to tasks elicited by specific object orientations
[6] or perceiving heaviness [7]. Unfortunately, there is little
evidence on how humans learn affordances.

From the robotics standpoint, affordances have been mainly
used to relate actions to objects. Several works use affordances
as prior information. A computational, cognitive model for
grasp learning in infants was proposed in [8]. The affordance
layer in this model provides information that helps to perform
the action. Affordances have also been used as prior distribu-
tions for action recognition in a Bayesian framework [9] or to
perform selective attention in obstacle avoidance tasks [10].

Several works have investigated the problem of learning
affordances and their subsequent application to differenttasks.
In [11], the robot learned the direction of motions of different
types of objects after poking and used this information at a
later stage, to recognize actions performed by others. The robot
used the learned maps to push objects so as to reproduce the
observed motion. A similar approach was proposed in [12],
where the imitation is also driven by the effects. However, they
focus on the interaction aspects and do not consider a general
model for learning and using affordances. The biologically
inspired behavior selection mechanism of [13] uses clustering
and self organizing feature maps to relate object invariants to
the success or failure of an action. All the previous approaches
learn specific types of affordances using the relevant informa-
tion extracted from their sensor channels. A more complete
solution has been recently proposed in [14] where the learning
procedure also selects the appropriate features from a set of
visual SIFT descriptors. The work in [15] focuses on the
importance of sequences of actions and invariant perceptions
to discover affordances in a behavioral framework. Finally,
based on the formalism of [16], a goal-oriented affordance
based control for mobile robots has been presented in [17].
Previously learned behaviors such astraverseor approachare
combined to achieve goal oriented navigation.

B. Our Approach

Learning affordances from scratch (without assuming
known models) can be overwhelming, as it involves relations

between motor and perceptual skills, resulting in an extremely
large dimension search problem. Instead, affordances can be
more appropriately defined once the robot has already learned
a suitable set of elementary actions to explore the world.

We adopt a developmental approach [18], [19], where the
robot acquires skills of increasing difficulty on top of previous
ones. As newborns, the robot should “start” with a minimal
subset of core (phylogenetic) capabilities [20] to bootstrap
learning mechanisms that, through self-experimentation and
interaction with the environment and other humans, would
progressively lead to the acquisition of new skills.

We follow the developmental roadmap proposed in [21] and
extend it to include the learning and usage of affordances inthe
world interaction phase. This framework considers three main
stages in a possible developmental architecture for humanoid
robots: (i) sensory-motor coordination; (ii) world interaction;
and (iii) imitation, (Table I). In the sensory-motor coordination
stage, the robot learns how to use its motor degrees of freedom
and the coupling between motor actions and perception. In
the world interaction phase, the robot learns by exploring the
effects of its own actions upon elements of the environment.In
the imitation phase, the robot learns by observing and imitating
other agents.

Affordances are central in the world interaction phase. At
this stage, the robot has already developed a set of perceptual
and motor skills required to interact with the world. We
introduce a general model for affordances learned by unsu-
pervised self exploration and that includes the effects of the
action on the object. Affordances are modeled with Bayesian
networks (BN) [22], a general probabilistic representation
of dependencies. We formulate the problem as a structure
learning algorithm, where affordances are encoded in the
probabilistic relations between actions and percepts (object
features and effects). This allows us to take advantage of the
general methods proposed in the machine learning community
for learning, inference and planning. Indeed, BN provides a
single framework for learning and using affordances.

We used the humanoid robot Baltazar (Fig. 3) to validate
our approach. We conducted several experiments to illustrate
the capability of the system to discover affordances associated
with manipulation actions (e.g. grasp, tap and touch), applied
to objects with different properties (color, size, shape).The
effects of these actions consist of changes perceived in the
sensor measurements, e.g. persistent tactile activation for a
grasp/touch, and object motion for a tap.

Our results show how the learned network captures the
structural dependencies between actions, object featuresand
effects. The model is able to distinguish the relevant properties
of the objects and discard those that do not influence action
outcomes. This ‘feature-selection’ aspect of the structure learn-
ing method is fundamental in planning because task execution
is often linked to object properties and only to a lesser extent
to objects themselves. The learned model is then used to
predict the effects of actions, recognize actions performed
by a human and to play simple interactions games. These
games are driven by the observed effects of the human action,
and exploit knowledge contained in the affordance network
to obtain the same effects. In this sense, imitation is not



limited to mimicking the detailed human actions. Rather, it
is used in a goal directed manner (emulation), as the robot
may choose a very different action (when compared to that of
the demonstrator) provided that its experience indicates that
the desired effect can be met.

In conclusion, the main contribution of this paper is a
model for learning and using affordances in the context of
a developmental framework for humanoid robots. The main
characteristics of the proposed model are:(i) it captures the
relations between actions, object features and effects;(ii)
it is learned through observation and interaction with the
world; (iii) it detects the features that really matter for each
affordance;(iv) it provides a common (seamless) framework
for learning and using affordances; and(iv) allows social
interaction by learning from others.

C. Structure of the paper

The paper is organized as follows. Section II presents the
first level of the developmental architecture, which deals with
sensory-motor coordination, learning of elementary actions
and basic perceptual skills. Section III describes our approach
for learning and modeling affordances using Bayesian net-
works. This corresponds to the second developmental stage,
where learning about the world is the primary motivation.
Section IV shows how several imitation-like behaviors can be
formulated as decision problems over the learned affordances
model. The entire approach is validated in Section V through
experimental tests with our humanoid platform, illustrating
the advantages of affordance based knowledge representation.
Section VI draws some conclusions and establishes directions
for future work.

II. D EVELOPING BASIC SKILLS

In this section, we present the robot phylogenetic capabili-
ties and the skills acquired during the first stage of develop-
ment, Sensory-Motor coordination. These motor and percep-
tual skills, developed prior to affordance learning, provide the
abstraction layer that allows the robot to start interacting with
the world.

We consider that each skill develops on top of another one,
following a developmental perspective. At the bottom level, we
have pre-programmed skills: simple visual segmentation and
categorization abilities for characterizing objects and effects
(based on color, shape, motion and orientation) and motor
capabilities (near-chaotic motion and controller structures).
Although innate, they are not fully operational and they still
require some learning [23]. For instance, the structure of the
controller is predefined, but only after learning, and with the
complete development of the related visual capabilities, it
becomes fully functional.

From pre-programmed skills, perception develops in order
to adapt to the structure of the world. Instead of dealing
directly with the raw sensor data, the robot has some filters
that simplify the data processing and provide higher level
information such as motion detection or color segmentation.
On top of this, the system learns in an unsupervised manner

(a) (b)

Fig. 2. Examples of actions as seen by the robot. (a) grasping and (b) tapping.

regularities in the world resulting, for instance, on the occur-
rence of particular classes of objects (colors, shapes, sizes)
and effects (motions) in the environment.

In parallel, the basic motor skills allow the robot to discover
the relation between its actions and its proprio-perceptions.
Usually, this correspondence between perception and action is
called a Sensory-Motor Map (SMM) and it can be interpreted
in terms of direct/inverse kinematics of robotic manipulators.
Inverse models are used to control the robot while direct ones
serve for prediction purposes.

Next, we describe the different modules that allow the robot
to acquire the following capabilities:(i) basic motor skills,(ii)
visual perception of objects and(iii) perception of effects.

A. Basic motor skills

Newborns have a series of reflexes and responses that drive
their future mastering of motor abilities. However, at birth
they are still too coarse to be functional and need to develop
during the first months of life. Similarly, we consider that
the robot starts with a predefined set of core motor actions
M = {mi}, whose parameters(λ, ψ) must be adjusted by
self-experience, i.e. by autonomous exploration of its motor
and sensory capabilities. A generic description for the model
mi is

Θ̇ = mi(Θ
∗, y, λ, ψ) (1)

whereΘ represents the controlled variables,Θ∗ is the final ob-
jective andy are the available proprioceptive measurements of
the robot. Parametersψ are related to the kinematics/dynamics
of the robot. In particular, SMMs are used to relate obser-
vations y to robot kinematics and dynamics. Parametersλ
depend on the task and serve to control its execution, i.e.
desired speed, energy criteria, posture. They can be tuned
during affordance learning (refer to Section V, Fig. 7), but
they are frozen by the system during the initial learning phase.

In this work we are focusing on object manipulation actions
like grasping(m1), tapping(m2) and touching(m3) (see Fig.
2). We consider each of these tasks consisting of three phases:
(i) bringing the hand to the field of view in an open-loop
fashion; (ii) approaching the object using visual servoingand;
(iii) actually grasping, tapping or touching the object. The
two former phases are learned by self-experience (see [21]
for further details), while the latter is pre-programmed due to
practical limitations of our current robotic platform.



B. Visual Perception of Objects

Vision is the most complex perceptual system in humans,
and the least developed at birth. Although infant perception
and cognition has been subject of extensive research in de-
velopmental psychology, there is still not much consensus on
the particular developmental stages of the young infant [24].
Recent work also suggests that infants are able to start forming
perceptual categories based on correlation information atthe
age of 4 months [25].

In this work, we assume the system has simple segmentation
and category formation capabilities already built-in . Forthe
sake of experimental simplicity, we have constructed a ’play-
ground’ environment as shown in Fig. 3. In this environment,
the robot plays with simple colorful objects over a white table,
and observes other people playing with the same objects.
Fast techniques like background or color segmentation are
employed at this stage to allow the robot to individuate and
track objects in real-time. Along time, the robot collects
information regarding simple visual object properties, like
color, shape, size, etc. Figure 3 illustrates the robot’s view
of several objects, together with their color segmentation
and extracted contour. After some time of interaction with
the objects, the robot is able to group their properties into
meaningful categories. The set of visual features employed
here consist on color descriptors, shape descriptors and size (in
the image). The color descriptor is given by the hue histogram
of pixels inside the segmented region (16 bins). The shape
descriptor is a vector containing region based measurements,
as follows:

• Convexity - ratio between object area and convex hull
area;

• Eccentricity - ratio between object minor and major axes;
• Compactness - ratio between object area and squared

external contour perimeter;
• Circleness - ratio between object area and the area of the

minimum enclosing circle;
• Squareness - ratio between object area and the area of

the minimum enclosing rectangle;
In the category formation phase, color, shape and size

descriptors are clustered into independent categories. This
allows us to make predictions on previously unseen objects,
but with some properties whose affordance has already been
learned.

C. Perception of Effects

In our framework, effects are defined as salient changes
in the perceptual state of the agent that can be correlated
to actions. For instance, upon interacting with objects, the
robot may experience sudden changes of object position and
velocity, and changes on tactile information related to contact.
Similarly to what was carried out for object properties, effects
are grouped into categories with unsupervised learning tech-
niques. For example, after tapping an object, its velocity may
be null, small or large, depending on the object characteristics.
After some time experimenting with objects and collecting
information about the effects of actions on objects, the agent
forms categories of effects by grouping those that are close

Fig. 3. Experimental Setup. The Robot’s workspace consists in a white table
and some colored objects with different shapes (Left). Object on the table are
represented and categorized according to their size shape and color, e.g. the
’ball’ and ’square’ class (Right).

in the sensory space. Obviously, we have to assume that the
motor and perceptual capabilities of the agent are such that
the same action applied to the same object will have similar
effects in average, for instance, all successful grasps will have
the pressure sensors persistently activated.

All effects are processed in the same way. When the action
starts, the agent observes its sensory inputs during a certain
time window, that depends on the action execution time and
the effects duration, and records the corresponding information
flow. We then fit a linear model to the temporal information
and represent the observed effects by the inclination and bias
of the regression. For velocities (object, hand and object-hand)
the regression is made on the sequence of image velocity
norms. Only the inclination is used since the bias only reflects
the absolute position in the image. For the contact information,
we consider only the bias (offset) of the linear regression that
gives a rough measure of the duration of contact.

III. A FFORDANCE MODELING AND LEARNING

In this section, we address the acquisition of the affordances
(second phase of Table I). In the previous phase, the robot
developed a set of skills that allows it to reason in a more
abstract level than joint positions or raw perceptions. Therobot
has now available a set of actions to interact with the world
and is able to detect and extract categorical information from
the objects around it. We pose the affordance learning problem
at this level of abstraction where the main entities are actions,
objects and effects.

We use a probabilistic graphical model known as Bayesian
Networks [22] to encode the dependencies between the ac-
tions, object features and the effects of those actions (seeFig.
4). Such a representation has several advantages. It allowsus
to take into account the uncertainty of the real world, encodes
some notion of causality and provides a unified framework for
learning and using affordances. We next describe briefly the
representation, inference and learning concepts using BN and
show how to apply them to our affordance problem.

A BN is a probabilistic directed graphical model where the
nodes represent random variablesX = {X1, ...,Xn} and the
(lack of) arcs represent conditional independence assumptions.
BNs are able to represent causal models since an arc from
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Fig. 4. Bayesian network model to represent the affordances.(a) An example
of the proposed model using color, shape and size information for the object
features; and motion and contact information as effects. (b) Generic model
where the nodes represent the actionsA, the object features available to the
robotF (1)...F (n) and the effects obtained through the actionsE(1)...E(m).

Xi → Xj can be interpreted asXi causesXj (see [26]). The
joint distribution of the BN decomposes in the following way:

p(X1, ...,Xn) =

n∏

i=1

p(Xi | XPa(Xi), θi) (2)

whereXPa(Xi) represents the parents of nodei, i.e. the set of
nodes with an arc towardsXi. The conditional probability
distribution (CPD) p(Xi | XPa(Xi), θi) of each node in
the graph depends on the parentsXPa(Xi) and on a set
of parametersθi. If the conditional distributions and priors
are conjugate, the conditional probability distributionsand
marginal likelihood can be computed in closed form resulting
in efficient learning and inference algorithms.

We now describe how to model the affordances using a
Bayesian network and the information already learned by
the robot in the previous phase. A discrete random variable
A = {ai} models the activation of the different motor actions
mi described in Section II-A. Each actionai is parameterized
by the corresponding set of parametersλi as described in
Eq. 1. For instance, when approaching an object to perform
a grasp the height of the hand with respect to the object
or the closing angles of the hand are free parameters. It is
important to note that from a sensory-motor point of view, the
free parameters result in the same action. Hence, at this stage
of development, the robot cannot distinguish between them,
since the differences will only appear when interacting with
those objects.

The object properties and effects are also modeled using
discrete variables corresponding to the classes detected by
the robot (see Sections II-B and II-C). We denoteFr =
{Fr(1), ..., Fr(nr)} and Fo = {Fo(1), ..., Fo(no)} the de-
scriptors extracted by each of the pre-processing modules for
the agent itself and for the objecto, respectively. Finally, let
E = {E(1), ..., E(ne)} be the effects detected by the robot
after executing an action. The set of nodesX is formed by
the discrete variablesA, Fr, Fo andE, X = {A,Fr, Fo, E}1.

1We represent a random variable by a capital letterX and its realizations
by x.

The difference between object features and effects is that the
former can be acquired through simple observation, whereas
the latter require interaction with the objects. Thus, clustering
the effects correspond to the first stage of the world interaction
phase and preludes the learning of the affordances.

Our final objective is to discover the relations between the
random variablesX representing actions, features and objects
(see Fig. 4). To do this, the robot performs an action on an
object and observes the resulting effects. By repeating this
procedure several times, the robot acquires a set ofN trials
D = x1:N (see Fig. 5). Let us assume for the moment that we
know the dependencies, that is, the structure of the network
representing affordances. Given the discrete representation of
actions, features and effects, we use multinomial distributions
and their corresponding conjugate, the Dirichlet distribution,
to model the CPDsp(Xi | XPa(Xi), θi) and the correspond-
ing parameter priorsp(θi). According to [27], the marginal
likelihood for a nodeXi and its parents givenD is:

p(x1:N
i | x1:N

Pa(xi)
) =

∫

[
N∏

n=1

p(xn
i | xn

Pa(xi)
, θi)]p(θi)dθi

=

|Xi|∏

j=1

Γ(αij)

Γ(αij +Nij)

|XP a(Xi)
|

∏

k=1

Γ(αijk +Nijk)

Γ(αijk)

whereNijk counts the number of trials withXi = j and
XPa(Xi) = k and Nij =

∑

k Nijk and Γ represents the
gamma function. The pseudo-countsαijk are the Dirichlet
hyper parameters of the selected prior distribution ofθi and
αij =

∑

k αijk. The marginal likelihood of the data is simply
the product of the marginal likelihood of each node,

p(D | G) = p(X1:N | G) =
∏

i

p(x1:N
i | x1:N

Pa(xi)
) (3)

where we have made explicit the dependency on the graph
structureG.

A. Learning the structure of the network

We are interested in learning the structureG, which is
actually an instance of a model selection problem. In a
Bayesian framework, this can be formalized as estimating the
distribution on the possible network structuresG ∈ G given
the data. Using the Bayes rule, we can express this distribution
as the product of the marginal likelihood and the prior over
graphs,

p(G | D) = ηp(D | G)p(G) (4)

whereη = p(D) is a normalization constant. The prior term
p(G) allows to incorporate prior knowledge on possible struc-
tures. Unfortunately, the number of BNs is super exponential
with the number of nodes [28]. Thus, it is infeasible to explore
all the possible graphs and one has to approximate the full
solution. Markov Chain Monte Carlo (MCMC) methods have
been proposed to approximate the distributionp(G | D) [29].
In our case, this can be important during the first stages of the
learning to keep a set of alternative hypotheses.



When there is enough data, an alternative solution is to
perform a local search to obtain the maximum likelihood
structure given the data,

G∗ = argmaxGp(G | D). (5)

This is a local technique and, consequently, may converge to
a local minimum.

As the robot itself performs the actions, it usually obtains
information of all the variablesXi. There are several algo-
rithms to learn the structure of the network with complete
data (see [30] for a review). In our experimental validation, we
use MCMC to approximate the full distribution and the hill-
climbing K2 algorithm [28] to explore the neighbors using
a gradient technique. Although the model also allows the
robot to learn by observation, there may be some missing
information. For instance, the action is not available and has
to be inferred from visual measurements. In this case, the
learning task is much harder and several algorithms have been
proposed such as augmented MCMC or structural EM [31].

Finally, it is important to consider causality. The previous
learning schemes are able to distinguish among equivalent
classes2. So as to be able to infer the correct causal depen-
dency, it is necessary to use interventional data where we
fixed some of the variables to a specific value to disambiguate
between graphs in the same equivalent class.

In the case of a robot interacting with its environment,
there are several variables that are actively chosen by the
robot: the action and the object. These variables are actually
interventional since they are set by the robot to their specific
values at each experience. Interventional data is currently an
important research topic within BN learning algorithms (see
[32]). Under the assumption of a perfect intervention of node
i, the value ofXi = x∗i is set to the desired value and its
CPD is just an indicator function with all the probability mass
assigned to this valuep(Xi | XPa(Xi), θi) = I(Xi = x∗i ). As
a result, the variableXi is effectively cut off from its parents
XPa(Xi).

B. Parameter learning and Inference

Once the structure of the network has been established, the
parametersθi of each node are estimated using a Bayesian ap-
proach [30]. The estimated parameters can still be sequentially
updated on-line allowing the incorporation of the information
provided by new trials.

Since the structure of the BN encodes the relations between
actions, object features and effects, we can now compute the
distribution of a (group of) variable(s) given the values ofthe
others. The most common way to do this is to convert the BN
into a tree and then apply the junction tree algorithm [33] to
compute the distribution of interests. It is important to note
that it is not necessary to know the values of all the variables
to perform inference.

Based on these probabilistic queries, we are now able to
use the affordance knowledge to answer the questions of

2Two directed acyclic graphsG and G′ are equivalent, if for every BN
B = (G, Θ) there exist another networkB′ = (G′, Θ′) such that they
define the same probability distribution.

Fig. 1 simply by computing the appropriate distributions.
For instance, the prediction of the effects when observing
an action ai on given observed object featuresfj is just
p(E | A = ai, F = fj). The query can combine features,
actions and effects both as observed information and as the
desired output.

IV. I NTERACTION GAMES

After interacting with the objects, the robot is ready to
start the social phase of its development. In this section, we
show how to use affordances in this context. Imitation, as
a word used in everyday language, refers to many different
behaviors. In biology, imitation aims to achieve the same
effect by copying the actions of the demonstrator [34]. This
requires to solve thebody correspondence problem[35], i.e.
the correspondence between the demonstrator’s actions and
the learner’s ones. Another common behavior is emulation. In
this case, the objective is to match the resulting effect [34].
This means that the learner can choose different actions from
those of the demonstrator as long as it achieves the same
result. Indeed, for many authors [36] emulation is strongly
related with affordances. This is because affordances provide
the means to relate actions to effects. In this paper we use
imitation to refer to this last behavior.

We describe next a set of interaction games between a
human and a robot. In each game, the robot observes a human
performing an action on an object. Then the robot is presented
with another object or objects and has to perform a compatible
action. More formally, letad be the action performed by the
demonstrator,fd the features of the object anded resulting
in the effect. We pose the problem as a one step Bayesian
decision problem where a reward (cost) functionr defines the
objective of the imitation task. The function to optimize is

< a∗, o∗ >= argmax
︸ ︷︷ ︸

a∈A,o∈O

E

[
r(ad, fd, ed, a, fo, eo)

]
(6)

wherefo and eo represent the object features and effects of
actiona. The maximization is over the set of possible actions
A and possible objectsO. Since the knowledge about the
action, objects and effects is not deterministic we need to take
the expectationE [] over the reward function. In particular,
the probability of the effects of a particular action-object
pair, p(E | A,O), is encoded by the affordance network
presented in Section III. For the sake of simplicity, in the
remainder of the section we use the maximum likelihood
estimation f̂d and êd of object features and effects. We
present examples of simple imitation behaviors to illustrate
the previous formulation.

a) Matching of effects::The objective of this behavior
is to achieve the same effect as observed when a single object
is present. The reward function is

r(ed) =

{
1, if Ei = êd

0, otherwise
(7)



whereêd is the most likely effect detected by the robot. Since
the reward does not depend on the object or the features, the
general expression simplifies to

a∗ = argmaxarp(E
i = êd|a, f i) (8)

wheref i are the features of the object.
b) Matching of effects and object selection::We now

describe the more complex situation, where the robot has to
select among a set of objectsO. If we do not care about the
object featuresfd, this simply requires the inclusion of the
available objects in the optimization,

< a∗, o∗ >= argmax
︸ ︷︷ ︸

a,oi∈O

rp(Ei = êd|a, foi) (9)

wherefoi represent the features of objectoi.
c) Matching of effects and object features::The last

behavior adds information about the object features in the cost
function. This allows the favoring of those objects similarto
the one used by the demonstrator. The cost function has the
following expression

r(ed, fd, f i) =

{

1, if Ei = êd ∧ F i = f̂d

0, otherwise
(10)

Notice that one could weigh the features giving different
rewards to different object features. For instance, if the desired
object is a big ball, we could weigh the sizes as a function
of their distance in the space of the measurements to the
class model. Since the current observations of the robot are
not deterministic, the expectation of Eq. 6 is now also taken
over the possible classes of each of the available objects. The
resulting expression is

< a∗, o∗ >= argmax
︸ ︷︷ ︸

a,oi∈O

rp(Ei = f̂d|a, foi)p(F oi = f̂d) (11)

wherep(F oi = f̂d) represents the likelihood of the features
of oi being equal to the featureŝfd. Again this probability
is computed based on the clusters of each dimension using a
metric on the space of each feature.

V. EXPERIMENTS

In this section we present a set of experimental results to
illustrate the acquisition and usage of affordance knowledge.
We used Baltazar, a14 degrees of freedom humanoid torso
composed by a binocular head and an arm. Using the motor
skills of Section II, Baltazar is able to perform three different
actionsA = {a1 = grasp(λ), a2 = tap(λ), a3 = touch(λ)}
whereλ represents the height of the hand in the 3D workspace
when reaching the object in the image. The robot applies its
actions on a set of different objects with two shapes (box and
ball), with four colors and three sizes (see Fig. 3).

We recorded a set of300 experiments following the protocol
depicted in Fig. 5. At each trial, the robot was presented with
a random object. Baltazar randomly selected an action and
approximated its hand to the object using the algorithms of

Grasp

Tap

Init
Observe

Effects

Observe

Object

Approach

Object

Touch

Fig. 5. Experiments protocol. The object to interact with is selected manually
and the action is randomly selected. Object properties are recorded in the
INIT to APPROACH transition when the hand is not occluding the object.
The effects are recorded in the OBSERVE state. INIT moves the hand to a
predefined position in open-loop.

Section II-A. When the reaching phase is completed, it per-
formed the selected action (grasp(λ) or tap(λ) or touch(λ))
and finally returned the hand to the initial location. Duringthe
action, the object features and effects are recorded.

We used the data of these trials to implement steps3 to 7
of Table I. In this paper, we assume that the motor skills have
already been learned as presented in Section II-A, for details
refer to [21]. Next, we present the results for the different
steps allowing the robot to evolve from basic sensory motor
coordination to imitation capabilities.

A. Discretization of perceptual information

This step plays an important role since it is the basis of the
discretization used in the affordance learning algorithms. In
our example, we used the three features described in SectionII:
color, shape and size. Each one is modeled as an-dimensional
vector space. Since our setup is clearly discrete, we applied
the X-meansalgorithm [37] to detect clusters in the space of
each object feature and in the effects. For the continuous free
parametersλ of the actuators such as height of the wrist, we
discretized them with a predefined resolution.

It is important to note that the final objective is to learn
the affordances given a set of available motor and perceptual
skills, not to make a perfect object classification. Indeed,the
clustering contains some errors due to different illumination
conditions. For instance, the features of some objects were
misclassified and the affordance learning has to cope with this
noise.

Figure 6(a) shows the results of theX-meansalgorithm for
the object shape. The two resulting clusters separate easily
balls from boxes based mostly on circleness and eccentricity
descriptors. Figure 6(b) gives the equivalent result for colors
where the features vector is an histogram of thehue. As the
objects have uniform color each histogram has only one salient
peak. Finally for the unidimensional size, three clusters were
enough to represent five different sizes of the objects presented
to the robot.

Figure 6(c) shows the classes of object velocities and
contact patterns detected by the robot following the procedure
described in Section II-C. Roughly, a grasp action resultedin
medium velocity (except in one case where the ball fell down
the table), tap produced different velocity patterns depending
on the shape and size of the object and touch has small
velocities. Also, contact information lasted longer for grasp
and touch actions than for tap ones. The combination of the
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Fig. 6. Clustering of object features and effects. (a) Shapedescription of the objects. Five features: convexity, eccentricity, compactness, circleness and
squareness describe the objects. For the objects considered in the experiments, box and balls, they can be clustered automatically. Different clusters are
represented by circles or plus signs. (b) Color histograms with the corresponding clusters. Each bin relates to a given Hue value. The clusters correspond to:
yellow, green1, green2 and blue. (c) Clustering of object velocity and contact. For each observation grasp is represented byx, tap by△ and touch by
◦.The vertical lines show the clusters boundaries for velocity and the horizontal line for contact.

TABLE II
SUMMARY OF VARIABLES AND VALUES .

Symbol Description Values
A Action grasp, tap, touch
H Height discretized in 10 values
C Color green1,green2, yellow, blue
Sh Shape ball, box
S Size small, medium, big
V Object velocity small, medium, big

HV Hand velocity small, medium, big
Di Object-hand velocity small, medium, big
Ct Contact duration none, short, long
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Fig. 7. Tuning the height for grasping a ball. (a) shows the dependencies
discovered by the learning algorithm. The action and shape for this example
are fixed and color does not have an impact on the effects. Node labels are
shown in Table II.(b) CPD of height given the robot obtained along contact
(successful grasp).

different features produces patterns in the feature space that
are used to infer statistical dependencies and causation. Table
II summarizes the clustering results for the different variables
and provides the notation used in the remainder of this section.

B. Affordances

Based on the previous descriptors of actions and its parame-
ters, features and effects, we present two different experiments
to illustrate the ability of the proposed model to capture the
affordances. We would like to remark that the robot does not
receive any information about the success or not of the actions.

The interest is in understanding the effects obtained by the
actions in an unsupervised manner.

The objective of the first experiment is to find the influence
of a free parameter of an action. The robot tries the action for
different configurations of the free parameters. For a grasp,
these parameters are the angle of the joints of the fingers and
height of the hand. The former is used after reaching the object
in the closing of the hand, whereas the latter is a free parameter
of the sensory motor map used to approximate the hand to
the object. We used the K2 algorithm3 to find the maximum
likelihood graph with a random starting point and BDeu priors
[27] to give uniform priors to different equivalence classes.

Figure 7(a) shows how the resulting network captures
the dependency of the effects on these parameters. More
interestingly, the CPDs provide the probability of producing
different effects according to the values of the free parameters.
Figure 7(b) shows the estimated probability of each height
conditioned on observing a long contact for medium and small
objects (which is the sign of a successful grasp). Since big
objects cannot be grasped by the robot’s hand, all heights have
zero probability for this class. Please note that the distribution
of Fig. 7(b) can be directly used to adjust the height of the
action for different object sizes.

The objective of the second experiment is to show how
the robot is able to distinguish the effects of different actions
and simultaneously select those features that are interesting
for this purpose. Also, we illustrate the differences between
the MCMC estimation of the distribution of possible networks
and the maximum likelihood solution provided by the K2
algorithm. In both cases, we use BDeu priors for the graphs
and random initialization. Although, one can use conditional
independence tests to provide a rough initialization for both
algorithms, in our case we got similar results using randomly
generated networks. For the MCMC algorithm, we used5000
samples with a burn-in period of 500.

Figures 8(a-d) show the network computed by the K2
algorithm and the three most likely networks computed by

3The implementation of the algorithms is based on the BNT toolboxfor
Matlab, http://bnt.sourceforge.net/.
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Fig. 8. This figure shows the affordance model estimated by the K2 algorithm and the MCMC. Node labels are shown in Table II. (a) K2 maximum
likelihood network; (b-d) three more likely networks obtained by the MCMC for the same data lengths and (e) posterior probability over graphs computed
by MCMC.

MCMC. For this particular case, there are no major differences
between both models. However, in the initial steps the MCMC
probability distributions represent the uncertainty on the model
selection problem. When using longer datasets, the probability
mass concentrates on a single group of very similar networks
but it still maintains a set of plausible networks that also
capture correct relationships between the variables. Figure 8(e)
shows the posterior probability of all the sampled models.
Note that in the example the posterior probability of the
K2 model is lower than0.05 according to the distribution
computed by MCMC. In some situations, due to its greedy
approach we found that the K2 algorithm converged to a model
that lacked some relevant relation such as the dependency
on the shape of the object. Nonetheless, for most cases the
K2 algorithm converges to a reasonable model even for little
data. The price to pay, when approximating the distribution
of possible networks, is a higher computational cost for the
MCMC algorithm.

Although there is no ground truth to compare the estimated
networks, we see that color has been detected as irrelevant
when performing any action. Shape and size are important
for grasp, tap and touch since they will have an impact
on observed velocities and contact. In order to show the
convergence of the network toward a plausible model, we
have estimated a network for different numbers of trials. For
each number, we have randomly created 100 datasets from
the complete dataset, estimate the posterior over graphs using
MCMC and compute the likelihood of the whole data for the
most likely model. Figure 9 shows how the marginal likelihood
of the data converges as the number of trials increases. The
figure also indicates that, after 100 trials, the improvement
of the likelihood of the data given more experiments is very
small since the model already was able to capture the correct
relations. On the other hand, for the K2 model of Fig. 8(a)
the marginal likelihood is 2775 which is lower than the one
attained by the MCMC algorithm.

The actual dependencies are encoded in the multinomial
CPDs of each node. Based on the most probable hypothesis
generated by the MCMC algorithm, we compute the maximum
likelihood parameters using also the same dataset. To validate
the network actually captures the correct dependencies, we
compute some illustrative conditional probability distributions.
Figure 10(a) presents the predicted contact duration of a grasp
action for different sizes. It basically states that successful
grasps (longer contact between the hand and the object)
occur more often with small objects than with bigger ones.
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Fig. 9. Marginal likelihood of the data given the learned network as
the number of trials increases. The vertical bars show the variance of the
likelihood.

Figure 10(b) shows the distribution of size after performing
a tap on a ball for different velocities. According to it,
small balls move faster than bigger ones and medium ball
velocities are highly unpredictable (similar likelihood for all
velocities). This actually reflects the behavior of the objects
during the trials. For instance, the mean and variance of
the ball velocity (µ[pixel/frame], σ2[pixel2/frame2]) were
(33.4, 172.3), (34.3, 524.9) and (17.5, 195.5) for a small,
medium and big balls, respectively.

In order to further validate the model, we have performed a
leave one out cross validation to evaluate the action recognition
capabilities of the network. For each trial, we computed the
network structure and parameters using the other trials and
the MCMC algorithm. We then estimated the probability of
each action given the object features and the object velocity,
hand velocity and object-hand velocity. Since contact is a
proprioceptive measurement, it is not usually available when
observing other’s actions. The most likely action was correct
in more than85% of the cases. The errors were due mainly
to the absence of contact information which makes touch and
tap very similar from the effects point of view for boxes. If
contact was included the ratio of correct recognition was98%.

Summarizing, we have shown how the robot can tune its
motor controllers through experimentation by including the
effects of its actions. Once this information is available,it
starts establishing relationships between the features ofthe
objects and the resulting effects of its actions. The model can
then easily be used to perform simple inference, predictionand
planning. The learning depends on the motor and perceptual
skills and is done in a completely unsupervised manner. There
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Fig. 10. Examples of CPD for the learned network: (a) showsp(Ct | S =
si, A = grasp, Sh = sq), the CPD of contact duration given a grasp was
performed on a box for every value of size. (b) showsp(S | V = vi, A =
tap, Sh = ball), the CPD of the size of a ball given the action was a grasp
for every possible value of velocity.

TABLE III
PROBABILITY OF ACHIEVING THE DESIRED EFFECTS FOR EACH ACTION

AND THE OBJECTS OFFIG. 11(B).

obj \ action grasp tap touch
Blue, big, ball 0.00 0.20 0.00

Yellow, small box 0.00 0.06 0.00

is no notion of success or failure and the network may not be
able to distinguish between non separable objects given the
used descriptors. However, it constructs a plausible modelof
the behavior of the different objects under different actions
that can readily be used for prediction and planning.

C. Interaction games

Finally, we present results on basic interaction games using
the affordance network. In this case, the robot observes a
person performing an action on a given object. Then, using one
of the functions described in Section IV, it selects an action
and an object to imitate (emulate) the human. Figure 11 depicts
the demonstration, the objects presented to the robot and the
selected action and object for different reward functions.

We used two different demonstrations, a tap on a small ball
resulting in high velocity and medium hand-object distance,
and a grasp on a small square resulting in small velocity and
small hand-object distance. Notice that contact information is
not available when observing others.

The objective of the robot is to obtain the same observed
effects. The first situation (Fig. 11(a)) is trivial as only tap has
a non zero probability of producing a high velocity. Hence, the
imitation function selected a tap on the only object available.
In Fig. 11(b) the demonstrator performed the same action, but
the robot had to decide between two different objects. Table
III shows the probabilities for the desired effects given the
six possible combinations of actions and objects. The robot
selected the highest probability and performed a tap on the
ball.

Figures 11(c) and (d) illustrate how including the object
features in the reward function produce different behaviors.
After observing the grasp demonstration, the robot had to
select among three objects: yellow big ball, yellow small
ball, blue small box. In the first case the objective was to
obtain the same effects (Eq. 8). The probability for each of
the objects is0.88, 0.92 and 0.52 respectively and the robot
grasped the yellow small ball even if the same object is also

on the table (Fig. 11(c)). Notice that this is not a failure since
it maximizes the probability of a successful grasp which is
the only requirement of the reward function. As described
in Section IV, we can include object information within the
reward function of the robot using Eq. 9. For instance, when
the reward was modified to include a similar shape, the robot
selected the blue box instead (see Fig. 11(d)).

VI. CONCLUSIONS

This paper addresses the learning and usage of affordances,
i.e. the relations between actions, objects and effects. We
used Bayesian networks as a general tool to capture these
dependencies and to infer causality relationships by taking
advantage of the intervention of the robot and the temporal
ordering of the events. Most previous works assumed that the
dependencies were known and learned a mapping between
pairs of actions and objects or used supervised approaches.
Our affordance model does not assume any prior knowledge
on the dependencies and tries to infer the graph of the network
directly from the exteroceptive and proprioceptive measure-
ments. In addition to affordance learning, the model also
allows the robot to tune the free parameters of the controllers.
By using Bayesian inference, the robot is able to predict
the value of the actions, objects features or effects using the
available information at a given point in time. Planning and
basic imitation behaviors are also posed as a Bayesian decision
problem to maximize a reward function.

We have integrated the previous model within a develop-
mental architecture where the robot incrementally develops
its skills. We argue that affordances are the bridge between
sensory-motor coordination and world understanding and imi-
tation. Affordances not only describe agent-object interactions
but they also provide an interpretation of the observed action
in terms of equivalent effects in the robot’s body, allowingthe
robot to emulate others.

Based on the proposed framework, there are plenty of
opportunities for future research. Biological systems develop
many of their different skills in parallel. We are now investi-
gating how to dynamically incorporate new robot capabilities
(actions) or world knowledge in the learning algorithms.
Although the proposed model can directly learn through obser-
vation of other agents, it is necessary to develop mechanisms
to update the knowledge sequentially and to deal with new
actions or effects. Finally, more complex plans are required
that include temporal dependencies of sequences of actions.
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