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Abstract. We present a color- and shape-based 3D tracking system suited to a
large class of vision sensors. The method is, in fact, applicable with any projec-
tion model, provided that it is calibrated and the projection function is known.
The tracking architecture is based on Particle Filtering methods where each parti-
cle represents the 3D state of the object, rather that its state in the image, therefore
bypassing the nonlinearity caused by the projection model.This allows the use of
realistic 3D motion models and easy integration of the sensor self-motion mea-
surements. All nonlinearities are concentrated in the observation model that, for
each particle, projects a few tens of special points onto theimage, on (and around)
the 3D object’s surface. The likelihood of each state is thenevaluated using color
histograms. Since only pixel access operations are required, the method does not
involve costly image processing routines like edge/feature extraction, color seg-
mentation or 3D reconstruction, that can be cumbersome withomnidirectional
projection models. The tracking system copes well with motion and optical blur.
We show applications of tracking various objects (balls, boxes) in mobile robots
with catadioptric and dioptric omnidirectional sensors.

1 Introduction

Omnidirectional and wide-angle vision sensors are becoming increasingly used in
robotics and surveillance systems. Since these sensors gather information from a large
portion of the surrounding space, they reduce the number of required cameras for a cer-
tain spatial coverage, thus sparing resources. Their classical applications are in mobile
robot self localization and navigation [16,9], surveillance systems [4] and humanoid
foveal vision setups [14]. One drawback is that images suffer strong distortion and per-
spective effects, demanding non-standard algorithms for target detection and tracking.

In scenarios where the shape of objects can be modeled accurately a priori, 3D
model-based techniques have been among the most successfulin tracking and pose es-
timation applications [15]. However, classical 3D model-based tracking methods are
strongly dependent on the projection models and, thus, are not easily applicable to
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omnidirectional images. Often non-linear optimization methods are employed: a cost
function expressing the mismatch between the predicted andobserved object points
is locally minimized with respect to the object’s pose parameters [15]. This process
involves the linearization of the relation between state and measurements, which can
be very complex with omnidirectional sensors. These approaches have limited conver-
gence basins requiring either small target motions or very precise prediction models.

In this paper we overcome this problem by addressing the poseestimation and track-
ing problem in a Monte Carlo sampling framework [7]. The state of the target is repre-
sented by a set of weighted particles, whose weights are computed by projecting target
features onto the image and matching them with the known object’s model. The method,
therefore, does not require the linearization between the state and the measurements, fa-
cilitating its use with arbitrary projection models. Here we use color features to compute
state likelihoods, but in principle other features like corners or edges could be used. The
reasons for using color features are the following: color features cope well with motion
and optical blur, which are frequent in the scenarios we consider; color features do
not require local image processing for extracting edges or corners, but simply pixel
evaluations, which makes the system work in real-time; finally, many robotics research
problems assume objects with distinctive colors to facilitate the figure-ground segmen-
tation problem, for instance in cognitive robotics [17] or robotic competitions [20]. The
algorithms presented in this paper are thus suited to such scenarios, using arbitrary pro-
jection models. In [21] we showed the utilization of this algorithm with omnidirectional
and perspective sensors. In this paper we concentrate on omnidirectional sensors and
formulate the tracking problem in the case of a moving robot.

The paper is organized as follows: Section 2 presents the imaging systems and re-
spective projection models. Section 3 describes the Particle Filtering approach. In Sec-
tion 4 we detail the color-based, sample-based observationmodel used in the filter. In
Section 5 we describe experiments in which we tracked balls and polyhedra with diop-
tric and catadioptric imaging systems. In Section 6 we draw conclusions and present
directions for future work.

2 Imaging Systems

In this section we describe the imaging systems used in our tracking methodology. In
fact the methodology is applicable with any projection model, under the assumption that
it is calibrated and the projection function is known. Considering robotic applications,
our imaging systems are in general designed to have a wide-angle constant-resolution
view of the ground plane [12,8] or an omnidirectional view inthe azimuth direction [2].
These imaging systems have axial symmetry in most of the state of the art designs, thus
we focus the following description on this assumption.

Cameras with axial symmetry can be described by (see Figs. 1aand 1c):

ρ = P
(

[r z]T ; ϑ
)

(1)

where thez axis coincides with the optical axis,[r z] represents a 3D point without its
azimuthal coordinate andϑ contains the system parameters.



In the case of a constant resolution design,P is trivial for the ground-plane, as it is
just a scale factor between pixels and meters [12,8]. DerivingP for the complete 3D
field of view (FOV) of a catadioptric system involves using the actual mirror shape,F ,
which is a function of the radial coordinatet. Based on first order optics, particularly
on the reflection law at the specular surface of revolution,(t, F ), we have:

arctan(ρ) + 2 · arctan(F ′) = − r − t

z − F
(2)

whereφ = −(r − t)/(z − F ) is the system’s vertical view angle,θ = arctan(ρ) is
the camera’s vertical view angle, andF ′ represents the slope of the mirror shape. When
F denotes an arbitrary function and we replaceρ = t/F , (2) becomes a differential
equation, expressing the constant horizontal resolution property,ρ = a · r + b, for one
planez = z0. F is usually found as a numerical solution of the differentialequation
(see details and more designs in [12,8]).

If F is a known shape then (2) describes a generic Catadioptric Projection Model
(CPM), as it forms an equation onρ for a given 3D point(r, z). Some simple shapes
F , such as a hyperboloid having one focus coinciding with the center of the pin-hole
camera capturing the mirror image, allow deriving a closed-form solution for finding
ρ from (r, z). In general, however, there is no closed-form solution. In these cases,
the CPM is usually implemented as an optimization procedurewhereρ is iteratively
changed to move the corresponding back-projection ray and approximating the 3D point
(r, z). This is computationally expensive and thus justifies finding simpler approximate
models for real-time applications.

(a) (b) (c) (d)

Fig. 1. Catadioptric and dioptric cameras. (a,b) CPM geometry and setup. FOV of about5m×9m

and camera0.6m above the ground. (d,e) CARPM geometry and setup. Lens DSL215 by Sunex.

Next we introduce two known models that approximate the CPM:the Unified Pro-
jection Model (UPM) and the standard Perspective Projection Model (PPM). The UPM
consists of a two-step mapping via a unit-radius sphere [10]: (i) a 3D world point,
P = [r ϕ z]T , is projected orthogonally to the sphere surface onto a point Ps; (ii)
project to a point on the image plane,Pi = [ρ ϕ]T , from a pointO on the vertical axis
of the sphere, through the pointPs. The mapping is defined by:

ρ =
l + m

l
√

r2 + z2 − z
· r (3)



where the(l, m) parameters describe the type of camera. The UPM is a widely used
representation for CPM whenF describes (i) a hyperboloid or ellipsoid with focus at
(0, 0); (ii) a paraboloid combined with a telecentric lens (θ = 0) or (iii) F = const [2].
In our case,F is computed numerically to have the constant resolution property, and
therefore does not correspond to any of the former cases. Thus, the UPM can only
approximate the CPM.

The PPM is a particular case of the UPM, obtained by settingl = 0 andk = −m :

ρ = k · r/z. (4)

Eq. (4) shows that the PPM has constant resolution, i.e., it enforces a linear relationship
betweenρ andr, at all z-planes. Simulations show that the PPM is more accurate for
the ground plane, as expected by its design, but the UPM allows better approximations
for planes above the ground, involving however more computations.

Lens-only systems, i.e., dioptric systems, have been traditionally described by the
PPM. This is valid only for narrow fields of view, as otherwisethe radial distortion
becomes too significant. Modeling super-fisheye fields of view (views larger that180o

angles) involves using other projection models [11,3]. Forexample [11] uses a super-
fisheye Nikon F8 and proposes the modelρ = a · tan(θ/b) + c · sin(θ/d). Some re-
cent advances allowed companies to build super-fisheye lenses having simple projection
models. For example the Sunex’s DSL215 lens, Fig. 1c, is designed to have a Constant
Angular Resolution Projection Model (CARPM, termedequidistant in [11]), meaning
the image pointsρ have a linear relationship if 3D elevation anglesθ:

ρ = f · θ = f · arctan(r/z). (5)

3 3D Tracking with Particle Filters

We are interested in estimating, at each time step, the 3D pose of the target. Thus,
the state vector of the target, denoted asXt, contains its 3D pose and derivatives up
to a desired order. It represents the object evolution alongtime, which is assumed to
be an unobserved Markov process with some initial distribution p(x0) and a transition
distributionp(xt | xt−1). The observations{yt; t ∈ N}, yt ∈ R

ny , are conditionally
independent given the process{xt; t ∈ N} with distributionp(yt | xt), whereny is
the dimension of the observation vector.

In a statistical setting, the problem is posed as the estimation of thea posteriori dis-
tribution of the state given all observationsp(xt | y1:t). Under the Markov assumption:

p(xt|y1:t) ∝ p(yt|xt)

∫

p(xt|xt−1) p(xt−1|y1:t−1)dxt−1. (6)

The above equation shows that thea posteriori distribution can be computed recur-
sively, using the estimate at the preceding time step,p(xt−1 | y1:t−1), the motion-
model,p(xt | xt−1) and the observation model,p(yt | xt).

We use Particle Filtering methods in which the probability distribution of an un-
known state is represented by a set of M weighted particles{x(i)

t , w
(i)
t }M

i=1 [7]:

p(xt | y1:t) ≈
M
∑

i=1

w
(i)
t δ(xt − x

(i)
t ) (7)



where δ(·) is the Dirac delta function. Based on the discrete approximation of
p(xt | y1:t), one can compute different estimates of the best state at time t. We use the

Monte Carlo approximation of the expectation,x̂
.
= 1

M

∑M

i=1 w
(i)
t x

(i)
t ≈ E(xt | y1:t),

or the maximum likelihood estimate,x̂ML
.
= argmaxxt

∑M
i=1 w

(i)
t δ(xt − x

(i)
t ).

The tracking algorithm is composed by four steps:

1. Prediction - computes an approximation ofp(xt | y1:t−1), by moving each particle
according to the object’s motion model

2. Observation - computes the likelihood of each particle, based on image data
3. Update - updates each particle’s weighti using its likelihoodp(yt | x

(i)
t ), by the

means ofw(i)
t ∝ w

(i)
t−1p(yt | x(i)

t )
4. Resampling - replicates the particles with a high weight and discards the ones with

a low weight

For this purpose, we need to model in a probabilistic way boththe motion dynamics,
p(xt | xt−1), and the computation of each particle’s likelihoodp(yt | x(i)

t ) (steps 1 and
2). We discuss the model for the motion dynamics in the rest ofthis section, while we
describe the observation model in Section 4.

3.1 Object Motion Dynamics

In order to accommodate to any real object motion, we use a Gaussian distributed one,
giving no privilege to any direction of motion:

p(Xt|Xt−1) = N (Xt|Xt−1, Λ) (8)

whereN (.|µ, Σ) stands for a Gaussian distribution with meanµ and covarianceΣ,
andΛ stands for the diagonal matrix with the variances for randomwalk models on the
components of the object state model. This approach has beenwidely used (e.g. [1,19]).

In this work we consider two kinds of objects: (i) spherical and (ii) polyhedral. For
the first case, the state vector consists of the 3D Cartesian position and linear velocities
of the ball,Xt = [x y z ẋ ẏ ż]T . The motion is modeled by a constant velocity model,
i.e., the motion equations correspond to a uniform acceleration during one time sample:

Xt+1 =

[

I (∆t)I
0 I

]

Xt +

[

(∆t2

2 )I
(∆t)I

]

at (9)

whereI is the 3 × 3 identity matrix,∆t = 1, andat is a 3 × 1 white zero mean
random vector corresponding to an acceleration disturbance. The covariance matrix of
the random acceleration vector is usually set experimentally as cov(at) = σ2I.

For the polyhedral object, the state vector isXt = [pt; qt] wherept = [x y z]T

denotes the position of the mass-center of the object andqt = [qw qx qy qz]
T is a

quaternion representing the object orientation. To model the dynamics, in this case we
use a constant pose model,pt+1 = pt + ηp andqt+1 = qt ∗ ηq, where∗ stands for
quaternion product,ηp is Gaussian noise andηq is a quaternion generated by sampling
Euler angles from a Gaussian distribution.



Since the coordinates in the model are real-world coordinates, the motion model
for a tracked object can be chosen in a principled way, both byusing realistic models
(constant velocity, constant acceleration, etc.) and by defining the covariance of the
noise terms in intuitive metric units. The fact of using a constant velocity model is not
limiting for cases where the objects can undergo sudden direction changes, e.g., in a
RoboCup scenario. Using an adequately chosen accelerationnoise, we can cope with
arbitrary accelerations.

3.2 Tracking with Moving Robots

To use the tracker on moving robots we need to distinguish between two reference
frames for the 3D coordinates of a point: the world referenceframe{W}, which is
inertial, and the robot reference frame{R}, which is not inertial as the robot undergoes
accelerations during its motion. The state of a tracked object is expressed in terms of
the world reference frame, so that a motion model based on thelaws of physics can be
expressed in the simplest possible way.

Fig. 2. Position of one sphere in the world and robot reference frames.

In order to project a 3D point onto the image plane, its relative position with respect
to the imaging system of the robot must be known. This means that coordinates ex-
pressed in the world reference frameWM = [WX,W Y,WZ, 1] must be transformed to
the robot reference frameRM = [RX,RY,RZ, 1] by means of the transformation matrix
RTW , which comprises the rotation matrixRRW and the translation vectorRtW .

RTW =

[

RRW
RtW

0 1

]

(10)

The transformation matrix is computed at every time step based on the difference be-
tween the initial pose of the robot and the current one. The 2Dcoordinates of the point
m, corresponding to the pointWM , are thus computed as:

m = P(RM) = P(RTW ·WM). (11)

In other words, we model the dynamics of the tracked object inthe world reference
frame, while the observer position is taken into account in the observation model.



4 Observation model

To calculate the likelihood of one particle we first define sets of 3D points, as a function
of the object 3D shape and of its position and orientation with respect to the imaging
system. Then we project these 3D points onto the image plane.Eventually we build a
color histogram for each set of points and compute the likelihood of the particle as a
function of the similarities between pairs of color histograms. This process avoids time-
consuming edge detection processing or rendering the full object model in the image
plane. Also, it facilitates the utilization of non-linear projection models, since only the
projection of isolated points is required.

4.1 3D Points Generation and Their Projection onto the Image

From one 3D pose hypothesis for the tracked object we determine sets of 2D points
that lie on the image, around the object edges and silhouette. The idea is that the color
and luminance differences around the object edges are indicators of the likelihood of
the hypothetical pose. We consider two different object shapes: spheres and convex
polyhedral objects. However the model can be easily extended to general polyhedral
objects by exploiting the current knowledge in computer graphics [13].

(a) (b) (c)

(d) (e) (f)

Fig. 3. Polyhedron 3D model. (a) and (d) show the location of the 3D points of the model. (b)
shows one particular projection of the object in which edgesa, b, c, d, e andf form the silhouette
of the projected figure, whileg, i andh are non-silhouette edges. (c), (e) show the areas sampled
in the image to build he internal and external histograms. (f) shows the couples of areas associated
with non-silhouette edges.

In the case of polyhedra, we use a 3D model that consists of a collection of faces
and edges. To each pair(face, edge) we associate a set of 3D points that lie on the



specific face, near the edge (Fig. 3a). To each edge we associate a set of points that lie
on the corresponding edge of an expanded polyhedron (Fig. 3d). The 3D points of this
model are used to define the areas of the image where the color is sampled in order to
build color histograms (see Figs. 3c, 3e and 3f) . This is doneby roto-translating the
model and then projecting the 3D points onto the image.

For spheres, we define two sets of 3D points that when projected onto the image
fall on the internal and external boundary of the sphere’s silhouette. These 3D points lie
on the intersection between the plane orthogonal to the lineconnecting the projection
center to the center of the sphere and two spherical surfaces, one with a radius smaller
than that of the tracked sphere, the other with a radius greater than that.

The projection of the 3D points onto the image is performed using the appropriate
projection model, as detailed in Section 2.

4.2 Color-Based Likelihood Measurement

The 2D points coordinates generated by the previous processare sampled in the current
image, and their photometric information is used to obtain each particle’s likelihood
w

(i)
t . This approximates the statea posteriori probability density function, represented

by the set of weighted particlesX(i)
t , w

(i)
t . For color modeling we use independent

normalized histograms in the HSI color space, which decouples intensity from color.
We denote byhc

ref = (hc
1,ref , . . . , hc

B,ref ) the B-bin reference (object) histogram
model in channelc ∈ {H, S, I}. An estimate for the histogram color model, denoted
by hc

x
= (hc

1,x, . . . , hc
B,x), can be obtained as

hc
i,x = β

∑

u∈U

δa(bc
u
), i = 1, . . . , B. (12)

U is the region where the histogram is computed;bc
u
∈ {1, . . . , B} denotes the his-

togram bin index associated with the intensity at pixel location u in channelc; δa is a
Kronecker delta function ata; and β is a normalization constant such that
∑B

i=1 hc
i,x = 1.

We definehmodel, hin andhout as a reference (object) histogram, the inner bound-
ary points and the outer boundary points histogram, respectively. We definehsideA

i and
hsideB

i as the histograms of each of the two sides of theith non-silhouette edge (see
Fig. 3f). To measure the difference between histograms we use the Bhattacharyya sim-
ilarity as in [5,18]:

S(h1,h2) =
B

∑

i=1

√

hi,1hi,2 (13)

We define:

S0 = S(hmodel,hin), S1 = S(hout,hin), S2 =

∑n

i=0 S(hsideA
i ,hsideB

i )

n
(14)

as the object-to-model, object-to-backgroundand mean-side-to-side (non-silhouette edges)
similarities, respectively. Finally, the resulting distance is:

D =

(

1 − S0 + κ1(1 − S1) + κ2(1 − S2)

κ1 + κ2 + 1

)

− γ (15)



whereγ is a coefficient that modulates the distance based on the number of projected
3D points that fall onto the image,γ = ln(used points ratio

ǫ
).

The rationale for this definition ofD is that the distance metric should be high when
candidate color histograms are different from the reference histogram and similar to the
background. It should also be high when there is little or no difference in color on the
sides of non-silhouette edges. Parametersκ1 andκ2 allow to balance the influence of the
different contributions, up to the extent of ignoring them,by setting such parameters to
0. They were set to 1.5 and 0.6 respectively, for the case of the polyhedron; for tracking
the sphere they were set to 1.5 and 0 in the first experiment andto 0 and 0 in the second
one. The data likelihood functionL is modeled as a Laplacian distribution over the

distance metric:p(yt | X(i)
t ) ∝ e−

|D|
ǫ . In our experiments we setǫ = 1/30.

5 Experimental Results

This section presents an evaluation of the proposed methods. Firstly we present the
tracking of a ball performed with a catadioptric setup. Thenwe show the results of the
tracking of a cuboid in a dioptric setup. Eventually we show the results of the tracking
of a ball performed with a moving robot equipped with a dioptric vision system.

5.1 Tracking a Ball in 3D with One Catadioptric Omnidirectional Camera

In this experiment we tracked a ball hitting an obstacle on the ground and subsequently
performing a sequence of parabolic movements. This image sequence was acquired
with a Marlin firewire camera (see Fig. 1b) with a frame rate of25fps and a resolution
of 640 × 480 pixels. The tracker used 10000 particles, the Unified Projection Model
described in Section 2 and the constant velocity motion model described in Section 3.1.
Processing was done off-line, with Matlab. In this case the tracker was provided with
the color model for the ball. The projection of the ball on theimage plane changes
dramatically in size during the image sequence (see Fig. 4a), due to the nature of the
catadioptric system used. The images are affected by both motion blur and heavy sensor
noise (see Fig. 4b). We repeated the tracking 10 times on the same image sequence to
assess how the aleatory component of the tracker influences the precision of the 3D
estimated paths (see Fig. 4c), with satisfactory results.

5.2 Tracking a Cuboid in 3D with one Dioptric Omnidirectional Camera

In this experiment we tracked a yellow cuboid in a sequence of600 frames, acquired
using the dioptric omnidirectional setup, comprising a Marlin firewire camera and a
Sunex DSL215 lens (see Fig. 1d). The resolution was640 × 480 pixels. In the tracker
we used 5000 particles, the Constant Angular Resolution Projection Model described
in Section 2 and the constant position motion model described in Section 3.1. Process-
ing was done off-line, with Matlab. The tracker managed to follow the cuboid along
rotations and translations that greatly affect its projection onto the image, see Fig. 5.



(a) (b)

(c)

Fig. 4. Ball tracking in the catadioptric setup. (a) Three frames ofthe sequence (top row), the
corresponding close-ups (bottom row). In both cases the projection of a ball lying in the estimated
position is marked in white, while the pixels used to build the inner and outer color histograms are
marked in black. (b) Close-ups of the ball showing motion blur and image sensor noise. (c) Plot of
the tracked paths resulting from 10 runs of the algorithm performed on the same image sequence.
The 10 blue lines with red points represents the 10 3D estimated trajectories of the ball, the blue
lines are the projection of these trajectories on the groundand lateral plane.

Fig. 5. Cuboid tracking in the dioptric setup. Six frames of the sequence with the pixels used to
build color histograms highlighted.



5.3 Arbitrary Color Ball Tracking with a Moving Robot

The tracker was implemented in the soccer robot team ISocRob[6] software architec-
ture in order to demonstrate a real-time application of the method with robots playing in
the RoboCup Middle Size League. In this experiment the omnidirectional robot tracked
a moving ball, moving while attempting to catch it. This implementation discards the
object-to-model mismatch, described in Eq. 14, and relies strictly on the object-to-
background dissimilarity. Therefore, we carried out the experience with an ordinary
soccer ball, mainly white colored, as one can see in Fig. 6a, but other colored balls,
e.g., orange, could be used.

Images on the robot were acquired using the same omnidirectional camera of the
previous experiment with a dioptric setup at 10fps. Odometry motion control measure-
ments were obtained at 25fps and we used only 600 particles inthe tracker. Processing
was done on-line, at 10fps. The results are visible in Fig. 6bwhere one can perceive the
robot path while pursuing the detected ball (arbitrary trajectory) in a global reference
frame (the soccer field centered frame).

(a) (b)

Fig. 6. Tracking a white ball with a moving robot. (a) Detection of a white ball based on the
object-to-background dissimilarity, where the light green crosses mark the pixels used to build
the background histogram. (b) Plot of the paths of robot and ball. The robot starts in the middle
circle facing opposite to the ball. The gray circles represent the robot’spose while the red dots
represent the ball localization, here in a 2D representation only.

6 Conclusions

We presented a 3D model-based tracking system, designed on aParticle Filter frame-
work. We illustrated that the system is particularly suitedfor omnidirectional vision
systems, as it only requires the projection of isolated points arising from likely posture
hypotheses for the target. We showed that the system is general and can be used with
different kinds of omnidirectional vision sensors (dioptric and catadioptric), with dif-
ferent kinds of tracked objects (spheres and polyhedra) andin the cases of static and



moving observer. The results demonstrate that the tracker is able to cope with complex
target motions in challenging observation conditions.

In future work we will investigate the possibility of applying information fusion
methods to perform the collaborative tracking of objects indistributed robotics systems.
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