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Abstract. We present a color- and shape-based 3D tracking systend saite
large class of vision sensors. The method is, in fact, applecwith any projec-
tion model, provided that it is calibrated and the projettionction is known.
The tracking architecture is based on Particle Filterinthods where each parti-
cle represents the 3D state of the object, rather that tisistéhe image, therefore
bypassing the nonlinearity caused by the projection mddes allows the use of
realistic 3D motion models and easy integration of the segslfi-motion mea-
surements. All nonlinearities are concentrated in the mbasen model that, for
each particle, projects a few tens of special points ontantlage, on (and around)
the 3D object’s surface. The likelihood of each state is #wetuated using color
histograms. Since only pixel access operations are retjufte method does not
involve costly image processing routines like edge/featxtraction, color seg-
mentation or 3D reconstruction, that can be cumbersome avithidirectional
projection models. The tracking system copes well with orofind optical blur.
We show applications of tracking various objects (ballxeg®) in mobile robots
with catadioptric and dioptric omnidirectional sensors.

1 Introduction

Omnidirectional and wide-angle vision sensors are becgnmiereasingly used in
robotics and surveillance systems. Since these senstémargatormation from a large
portion of the surrounding space, they reduce the numbempfired cameras for a cer-
tain spatial coverage, thus sparing resources. Theiricisgpplications are in mobile
robot self localization and navigation [16,9], surveitansystems [4] and humanoid
foveal vision setups [14]. One drawback is that images saffeng distortion and per-
spective effects, demanding non-standard algorithmsafget detection and tracking.
In scenarios where the shape of objects can be modeled &dguaariori, 3D
model-based techniques have been among the most sucérssdicking and pose es-
timation applications [15]. However, classical 3D modabked tracking methods are
strongly dependent on the projection models and, thus, ereasily applicable to
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omnidirectional images. Often non-linear optimizationthoels are employed: a cost
function expressing the mismatch between the predictedoasdrved object points
is locally minimized with respect to the object’'s pose pagtars [15]. This process
involves the linearization of the relation between statéd mm@asurements, which can
be very complex with omnidirectional sensors. These amtreshave limited conver-
gence basins requiring either small target motions or veggipe prediction models.

In this paper we overcome this problem by addressing thegmisaation and track-
ing problem in a Monte Carlo sampling framework [7]. The stat the target is repre-
sented by a set of weighted particles, whose weights are et@d by projecting target
features onto the image and matching them with the knowrctgjmodel. The method,
therefore, does not require the linearization betweenttite and the measurements, fa-
cilitating its use with arbitrary projection models. Here use color features to compute
state likelihoods, but in principle other features likereens or edges could be used. The
reasons for using color features are the following: colatdees cope well with motion
and optical blur, which are frequent in the scenarios we idenscolor features do
not require local image processing for extracting edgesoonears, but simply pixel
evaluations, which makes the system work in real-time; fimailany robotics research
problems assume objects with distinctive colors to fat#itthe figure-ground segmen-
tation problem, for instance in cognitive robotics [17] obotic competitions [20]. The
algorithms presented in this paper are thus suited to stasios, using arbitrary pro-
jection models. In [21] we showed the utilization of this@iighm with omnidirectional
and perspective sensors. In this paper we concentrate oidioentional sensors and
formulate the tracking problem in the case of a moving robot.

The paper is organized as follows: Section 2 presents thgifmgaystems and re-
spective projection models. Section 3 describes the RaFittering approach. In Sec-
tion 4 we detail the color-based, sample-based observatadel used in the filter. In
Section 5 we describe experiments in which we tracked badsalyhedra with diop-
tric and catadioptric imaging systems. In Section 6 we dranctusions and present
directions for future work.

2 Imaging Systems

In this section we describe the imaging systems used in agkitrg methodology. In
fact the methodology is applicable with any projection nlpdeder the assumption that
it is calibrated and the projection function is known. Calesing robotic applications,
our imaging systems are in general designed to have a wigle-aonstant-resolution
view of the ground plane [12,8] or an omnidirectional viewtie azimuth direction [2].
These imaging systems have axial symmetry in most of the sfdhe art designs, thus
we focus the following description on this assumption.
Cameras with axial symmetry can be described by (see Figmd ac):

p="P([r Z]T;ﬁ) 1)

where thez axis coincides with the optical axiB; z] represents a 3D point without its
azimuthal coordinate anélcontains the system parameters.



In the case of a constant resolution desiBns trivial for the ground-plane, as it is
just a scale factor between pixels and meters [12,8]. Degi¥# for the complete 3D
field of view (FOV) of a catadioptric system involves using tictual mirror shape,
which is a function of the radial coordinateBased on first order optics, particularly
on the reflection law at the specular surface of revolutiorg’), we have:

—1
arctan(p) + 2 - arctan(F’) = — ! 2)
z—F
where¢ = —(r — t)/(z — F) is the system’s vertical view anglé,= arctan(p) is

the camera’s vertical view angle, aft represents the slope of the mirror shape. When
F denotes an arbitrary function and we replace- ¢/F, (2) becomes a differential
equation, expressing the constant horizontal resolutiopgrty,p = a -  + b, for one
planez = zy. F is usually found as a numerical solution of the differenéigliation
(see details and more designs in [12,8]).

If F'is a known shape then (2) describes a generic Catadioptjedtion Model
(CPM), as it forms an equation gnfor a given 3D point(r, z). Some simple shapes
F, such as a hyperboloid having one focus coinciding with #er of the pin-hole
camera capturing the mirror image, allow deriving a clogada solution for finding
p from (r, z). In general, however, there is no closed-form solution.hese cases,
the CPM is usually implemented as an optimization procedurerep is iteratively
changed to move the corresponding back-projection ray ppaimating the 3D point
(r, z). This is computationally expensive and thus justifies figdiimpler approximate
models for real-time applications.
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Fig. 1. Catadioptric and dioptric cameras. (a,b) CPM geometry ahgs FOV of abou§m x 9m
and camerd.6m above the ground. (d,e) CARPM geometry and setup. Lens D&h@ Bunex.

Next we introduce two known models that approximate the C#el:Unified Pro-
jection Model (UPM) and the standard Perspective Projadilodel (PPM). The UPM
consists of a two-step mapping via a unit-radius sphere: [0k 3D world point,
P = [r ¢ 2], is projected orthogonally to the sphere surface onto atpin ii)
project to a point on the image plan, = [p ¢]7, from a pointO on the vertical axis
of the sphere, through the poiRt. The mapping is defined by:

l+m 3)
N
p IVr2 +22 — 2



where the(l, m) parameters describe the type of camera. The UPM is a widelg¢ us
representation for CPM wheh describes (i) a hyperboloid or ellipsoid with focus at
(0, 0); (ii) a paraboloid combined with a telecentric leds= 0) or (iii) F' = const [2].

In our case[F' is computed numerically to have the constant resolutiopgny, and
therefore does not correspond to any of the former casess, The UPM can only
approximate the CPM.

The PPM is a particular case of the UPM, obtained by settiad) andk = —m :

p=Fk-r/z 4)
Eq. (4) shows that the PPM has constant resolution, i.efarees a linear relationship
betweenp andr, at all z-planes. Simulations show that the PPM is more accurate for
the ground plane, as expected by its design, but the UPM silteiter approximations
for planes above the ground, involving however more contjonsa.

Lens-only systems, i.e., dioptric systems, have beentivadily described by the
PPM. This is valid only for narrow fields of view, as otherwike radial distortion
becomes too significant. Modeling super-fisheye fields of\(idews larger thai 80°
angles) involves using other projection models [11,3]. &ample [11] uses a super-
fisheye Nikon F8 and proposes the modek a - tan(8/b) + ¢ - sin(f/d). Some re-
centadvances allowed companies to build super-fisheyeddraving simple projection
models. For example the Sunex’s DSL215 lens, Fig. 1c, igdesito have a Constant
Angular Resolution Projection Model (CARPM, termeguidistant in [11]), meaning
the image pointg have a linear relationship if 3D elevation anghes

p=f-0=f-arctan(r/z). (5)

3 3D Tracking with Particle Filters

We are interested in estimating, at each time step, the 3 pbshe target. Thus,
the state vector of the target, denotedXys contains its 3D pose and derivatives up
to a desired order. It represents the object evolution atong, which is assumed to
be an unobserved Markov process with some initial distidiout(xo) and a transition
distributionp(x; | x;—1). The observationgy,;t € N}, y, € R"Y, are conditionally
independent given the procegs;; ¢t € N} with distributionp(y, | x;), whereny is
the dimension of the observation vector.

In a statistical setting, the problem is posed as the estimaf thea posteriori dis-
tribution of the state given all observatiops: | y,.,). Under the Markov assumption:

p(xely 1) o Pyelxe) / P30 1) P(Xe1 [y 101 )1, (6)

The above equation shows that thgosteriori distribution can be computed recur-
sively, using the estimate at the preceding time stég;—1 | y,.;_), the motion-
model,p(x; | x;—1) and the observation modelyy, | x).

We use Particle Filtering methods in which the probabiliistribution of an un-

known state is represented by a set of M weighted part{oté@ , @”}5\11 [71:

M
P Ly = > wio(xe — xi”) 7)
=1



where §(-) is the Dirac delta function. Based on the discrete approté@naof
p(x: | y1..), one can compute different estimates of the best state attiile use the

Monte Carlo approximation of the expectaticn:= & > w{”x ~ E(x; | y,.,),
or the maximum likelihood estimat&y;, = arg maxx, Zf\il wil)é(xt — xff)).
The tracking algorithm is composed by four steps:

1. Prediction - computes an approximation pfx; | y,.;_1), by moving each particle
according to the object’s motion model

2. Observation - computes the likelihood of each particle, based on imatg da

3. Update - updates each particle’s weightising its likelihoodp(y, | th)), by the
means ofwt(i) o wt(i_)lp(yt | xff))

4. Resampling - replicates the particles with a high weight and discardsties with
a low weight

For this purpose, we need to model in a probabilistic way Bathmotion dynamics,
p(x: | x¢—1), and the computation of each particle’s likelihqag, | xy)) (steps 1 and
2). We discuss the model for the motion dynamics in the retisfsection, while we
describe the observation model in Section 4.

3.1 Object Motion Dynamics

In order to accommodate to any real object motion, we use a$kaudistributed one,
giving no privilege to any direction of motion:

P(Xe|Xi—1) = N (X[ X1, 4) 8)

where N (.|u, X) stands for a Gaussian distribution with mearand covariance”,
and A stands for the diagonal matrix with the variances for ranéa@ik models on the
components of the object state model. This approach hasitidely used (e.g. [1,19]).

In this work we consider two kinds of objects: (i) sphericatldii) polyhedral. For
the first case, the state vector consists of the 3D Cartesisitign and linear velocities
of the ball,X; = [z y z @ 7 2]*. The motion is modeled by a constant velocity model,
i.e., the motion equations correspond to a uniform accederduring one time sample:

A T 1 P

where [ is the3 x 3 identity matrix, At = 1, anda; is a3 x 1 white zero mean
random vector corresponding to an acceleration distushaftoe covariance matrix of
the random acceleration vector is usually set experimigrgalco\a;) = o°1.

For the polyhedral object, the state vectoXis = [p;; q;] wherep; = [z y 2|7
denotes the position of the mass-center of the objectaane [, ¢. g, ¢.]7 is a
quaternion representing the object orientation. To mdukettynamics, in this case we
use a constant pose modpl,.1 = p: + 1, andq.r1 = q; * 14, Wherex stands for
quaternion producty, is Gaussian noise ang is a quaternion generated by sampling
Euler angles from a Gaussian distribution.



Since the coordinates in the model are real-world coordgahe motion model
for a tracked object can be chosen in a principled way, bothdiyg realistic models
(constant velocity, constant acceleration, etc.) and Hinitg the covariance of the
noise terms in intuitive metric units. The fact of using a stamt velocity model is not
limiting for cases where the objects can undergo suddewrtiirechanges, e.g., in a
RoboCup scenario. Using an adequately chosen acceleratis@, we can cope with
arbitrary accelerations.

3.2 Tracking with Moving Robots

To use the tracker on moving robots we need to distinguistvdrt two reference
frames for the 3D coordinates of a point: the world refereframe {W}, which is
inertial, and the robot reference frarfie}, which is not inertial as the robot undergoes
accelerations during its motion. The state of a trackedabligeexpressed in terms of
the world reference frame, so that a motion model based olawseof physics can be
expressed in the simplest possible way.
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Fig. 2. Position of one sphere in the world and robot reference feame

In order to project a 3D point onto the image plane, its re¢gpiosition with respect
to the imaging system of the robot must be known. This meagisabordinates ex-
pressed in the world reference fraia/ = [VX,"'Y,"WZ, 1] must be transformed to
the robot reference franf&/ = [%X, Y £ Z 1] by means of the transformation matrix
ETy,, which comprises the rotation mat3®y; and the translation vectdty; .

BTy = [RRW RtW] (10)

The transformation matrix is computed at every time steptas the difference be-
tween the initial pose of the robot and the current one. The@®dinates of the point
m, corresponding to the poittd/, are thus computed as:

m = P(EM) = P(ETyw W M). (11)

In other words, we model the dynamics of the tracked objet¢héworld reference
frame, while the observer position is taken into accounténabservation model.



4 Observation model

To calculate the likelihood of one particle we first definess#t3D points, as a function
of the object 3D shape and of its position and orientatio wéispect to the imaging
system. Then we project these 3D points onto the image plarentually we build a
color histogram for each set of points and compute the likald of the particle as a
function of the similarities between pairs of color histagns. This process avoids time-
consuming edge detection processing or rendering the lijglcd model in the image
plane. Also, it facilitates the utilization of non-lineargpection models, since only the
projection of isolated points is required.

4.1 3D Points Generation and Their Projection onto the Image

From one 3D pose hypothesis for the tracked object we detersets of 2D points
that lie on the image, around the object edges and silhoudteeidea is that the color
and luminance differences around the object edges areaitodgcof the likelihood of
the hypothetical pose. We consider two different objecpsBaspheres and convex
polyhedral objects. However the model can be easily exttolgeneral polyhedral
objects by exploiting the current knowledge in computepbgres [13].

Fig. 3. Polyhedron 3D model. (a) and (d) show the location of the 3idtpf the model. (b)
shows one particular projection of the object in which edgésc, d, e and f form the silhouette

of the projected figure, whilg, i andh are non-silhouette edges. (c), (e) show the areas sampled
in the image to build he internal and external histogramshéws the couples of areas associated
with non-silhouette edges.

In the case of polyhedra, we use a 3D model that consists ofiection of faces
and edges. To each pdiface, edge) we associate a set of 3D points that lie on the



specific face, near the edge (Fig. 3a). To each edge we assadat of points that lie
on the corresponding edge of an expanded polyhedron (FjgT8d 3D points of this
model are used to define the areas of the image where the saanipled in order to
build color histograms (see Figs. 3c, 3e and 3f) . This is doneoto-translating the
model and then projecting the 3D points onto the image.

For spheres, we define two sets of 3D points that when prajemtiéo the image
fall on the internal and external boundary of the spher#i®saitte. These 3D points lie
on the intersection between the plane orthogonal to theclimmecting the projection
center to the center of the sphere and two spherical surfaneswith a radius smaller
than that of the tracked sphere, the other with a radius gréan that.

The projection of the 3D points onto the image is performedgithe appropriate
projection model, as detailed in Section 2.

4.2 Color-Based Likelihood M easurement

The 2D points coordinates generated by the previous precesampled in the current
image, and their photometric information is used to obtaicheparticle’s likelihood
wgﬂ. This approximates the stadgposteriori probability density function, represented
by the set of weighted particleXEi),wgi). For color modeling we use independent
normalized histograms in the HSI color space, which de@siitensity from color.
We denote byh? . = (h{,.;...., "% ,.;) the B-bin reference (object) histogram
model in channet € {H, S, I}. An estimate for the histogram color model, denoted
by hg = (h{ x,...,hp ), can be obtained as
W =8> 6a(06), i=1,...,B. (12)
ueld

U is the region where the histogram is computii;e {1,..., B} denotes the his-
togram bin index associated with the intensity at pixel tieau in channek; ¢, is a
Kronecker delta function at; and 8 is a normalization constant such that
ZiB;l h’f,x =1

We defineh™°del hin andh°" as a reference (object) histogram, the inner bound-
ary points and the outer boundary points histogram, resgdctWe definehside4 and
h#ideB a5 the histograms of each of the two sides of iffienon-silhouette edge (see
Fig. 3f). To measure the difference between histograms weheBhattacharyya sim-
ilarity as in [5,18]:

B

S(hy, hy) = Z Vhiihiz (13)

=1
We define:
_ Z?:O S(hfideA, hfideB)
n

SO —_ S(hmodel, hin)7 81 —_ S(hout7 hin)7 82 (14)

as the object-to-model, object-to-background and mede+si-side (non-silhouette edges)
similarities, respectively. Finally, the resulting diste is:

D— (1 SOJr’il(lSl)Jr’iQ(lSQ)) PN (15)
K1+ ko +1




wherev is a coefficient that modulates the distance based on the eofiprojected
3D points that fall onto the image, = In( !4 ponts ratg,

The rationale for this definition dP is that the distance metric should be high when
candidate color histograms are different from the refeedristogram and similar to the
background. It should also be high when there is little or iff@ince in color on the
sides of non-silhouette edges. Paramete@ndx- allow to balance the influence of the
different contributions, up to the extent of ignoring theéa setting such parameters to
0. They were set to 1.5 and 0.6 respectively, for the caseegidhyhedron; for tracking
the sphere they were setto 1.5 and 0 in the first experimertbadend 0 in the second
one. The data likelihood functiod is modeled as a Laplacian distribution over the

distance metricp(y: | Xff)) x e~ < . In our experiments we set= 1/30.

5 Experimental Results

This section presents an evaluation of the proposed metltadtly we present the
tracking of a ball performed with a catadioptric setup. Thenshow the results of the
tracking of a cuboid in a dioptric setup. Eventually we shbe tesults of the tracking
of a ball performed with a moving robot equipped with a diaptision system.

5.1 Tracking aBall in 3D with One Catadioptric Omnidirectional Camera

In this experiment we tracked a ball hitting an obstacle engitound and subsequently
performing a sequence of parabolic movements. This imageesee was acquired
with a Marlin firewire camera (see Fig. 1b) with a frame rat@8fps and a resolution
of 640 x 480 pixels. The tracker used 10000 particles, the Unified Ptigjedodel
described in Section 2 and the constant velocity motion nabekeribed in Section 3.1.
Processing was done off-line, with Matlab. In this case theker was provided with
the color model for the ball. The projection of the ball on theage plane changes
dramatically in size during the image sequence (see Fig.dd#) to the nature of the
catadioptric system used. The images are affected by baibmitdur and heavy sensor
noise (see Fig. 4b). We repeated the tracking 10 times oreiine $mage sequence to
assess how the aleatory component of the tracker influeheegrecision of the 3D
estimated paths (see Fig. 4c), with satisfactory results.

5.2 Tracking a Cuboid in 3D with one Dioptric Omnidirectional Camera

In this experiment we tracked a yellow cuboid in a sequend®@06fframes, acquired
using the dioptric omnidirectional setup, comprising a Mafirewire camera and a
Sunex DSL215 lens (see Fig. 1d). The resolution @#Ex 480 pixels. In the tracker
we used 5000 particles, the Constant Angular Resolutioje€ion Model described
in Section 2 and the constant position motion model desdiiiv&ection 3.1. Process-
ing was done off-line, with Matlab. The tracker managed ttofe the cuboid along
rotations and translations that greatly affect its pragecbnto the image, see Fig. 5.
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Fig. 4. Ball tracking in the catadioptric setup. (a) Three frameshef sequence (top row), the
corresponding close-ups (bottom row). In both cases thegtion of a ball lying in the estimated
position is marked in white, while the pixels used to build ithner and outer color histograms are
marked in black. (b) Close-ups of the ball showing motion bled image sensor noise. (c) Plot of
the tracked paths resulting from 10 runs of the algorithnfiguered on the same image sequence.
The 10 blue lines with red points represents the 10 3D estinagdjectories of the ball, the blue
lines are the projection of these trajectories on the gr@amttilateral plane.

Fig. 5. Cuboid tracking in the dioptric setup. Six frames of the szme with the pixels used to
build color histograms highlighted.



5.3 Arbitrary Color Ball Tracking with a Moving Robot

The tracker was implemented in the soccer robot team ISoffctmftware architec-
ture in order to demonstrate a real-time application of tle¢hmd with robots playing in
the RoboCup Middle Size League. In this experiment the oiregtional robot tracked
a moving ball, moving while attempting to catch it. This iraplentation discards the
object-to-model mismatch, described in Eq. 14, and religstly on the object-to-
background dissimilarity. Therefore, we carried out thpesience with an ordinary
soccer ball, mainly white colored, as one can see in Fig. 6apther colored balls,
e.g., orange, could be used.

Images on the robot were acquired using the same omnidirettcamera of the
previous experiment with a dioptric setup at 10fps. Odoyneintion control measure-
ments were obtained at 25fps and we used only 600 partictbg itmacker. Processing
was done on-line, at 10fps. The results are visible in FigvBbre one can perceive the
robot path while pursuing the detected ball (arbitraryetcggry) in a global reference
frame (the soccer field centered frame).

(a) (b)

Fig. 6. Tracking a white ball with a moving robot. (a) Detection of &ite ball based on the
object-to-background dissimilarity, where the light greosses mark the pixels used to build
the background histogram. (b) Plot of the paths of robot ail Bhe robot starts in the middle
circle facing opposite to the ball. The gray circles repnésbe robot'spose while the red dots
represent the ball localization, here in a 2D represemtatidy.

6 Conclusions

We presented a 3D model-based tracking system, designedPartiele Filter frame-
work. We illustrated that the system is particularly suifed omnidirectional vision
systems, as it only requires the projection of isolated fsanising from likely posture
hypotheses for the target. We showed that the system is @jearet can be used with
different kinds of omnidirectional vision sensors (diepi@nd catadioptric), with dif-
ferent kinds of tracked objects (spheres and polyhedrajratite cases of static and



moving observer. The results demonstrate that the traskadle to cope with complex
target motions in challenging observation conditions.

In future work we will investigate the possibility of apphg information fusion

methods to perform the collaborative tracking of objectigtributed robotics systems.
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