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From Pixels to Objects: Enabling a spatial model for humanoid social
robots

Dario Figueira Manuel Lopes

Abstract— This work adds the concept of object to an existent
low-level attention system of the humanoid robot iCub. The
objects are defined as clusters of SIFT visual features. When
the robot first encounters an unknown object, found to be within
a certain (small) distance from its eyes, it stores a cluster of the
features present within an interval about that distance, using
depth perception. Whenever a previously stored object crosses
the robot’s field of view again, it is recognized, mapped into an
egocentrical frame of reference, and gazed at. This mapping
is persistent, in the sense that its identification and position
are kept even if not visible by the robot. Features are stored
and recognized in a bottom-up way. Experimental results on the
humanoid robot iCub validate this approach. This work creates
the foundation for a way of linking the bottom-up attention
system with top-down, object-oriented information provided by
humans.
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I. INTRODUCTION

For humanoid robots to autonomously act in our daily
environment, they must be endowed with the capability of
perceiving objects, e.g. required to handle. Thus, an appropri-
ate representation in order to memorize and recognize these
objects is mandatory. However, robot sensory apparatuses
only provide raw sensory data. Taking vision as a sensor, how
can it bridge the gap between raw pixels and the concept of
object? And how can it realize their relative positions within
the surrounding environment, even when they are temporarily
out of the cameras field of view?

The system presented here addresses these problems, by
taking a bottom-up, developmental approach. The developed
module builds upon an existing low-level attention system.
The previous work provides a salience map with respect
to a robot-centric coordinate system (ego-sphere) [1]. This
saliency map, together with a inhibition of return mechanism
(IOR), allows the robot to saccade from salient point to
salient point. However, these salience points correspond to
preattentive features, e.g., movement, color, and shape, that
do not incorporate the concept of object.

The goal of the work presented here is to endow the robot
with the capability of learning and recognizing objects. By
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Fig. 1. Ego-sphere: a spherical map of the surroundings with a spherical
coordinate system (azimuth 19 and elevation ¢.)

integrating this capability into the existing architecture, the
attention module will be able to acknowledge the salience
of known objects, because they are recognized as such.
Moreover, the capability of recognizing known objects by
visual features paves the way for higher level modules, such
as language, to implement complex cognitive functions.

The robot considered here is the iCub humanoid robot!.
However, just the head and torso modules were employed.
While the head has the 6 degrees of freedom, the torso
is fixed. We consider a robot centered coordinate system,
specifically, a torso anchored coordinate system.

To fulfill the goal of enabling an agent to commute
automatically its attention focus from recognized object to
recognized object, we are modeling the environment with
a salience map [2]. We project the surrounding space and
objects into a spherical coordinate system centered in the
neck of the robot, an egocentric sphere or ego-sphere, as
defined in [1] (Figure 1).

A spatial model for the robot is here understood as a
model representing the environment surrounding it, namely
the known objects, together with their relative positions to
the robot.

In this work we add to the spatial saliency map imple-
mented in [1] and endow the system with an interpretation of
its surroundings. The system now maps known visual objects,
so it can know where they are after looking away. Instead
of the short-time memory of the previous works [1], [2],
the system remembers where important objects are at longer
time scales.

Uhttp://www.robotcub.org/
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We implemented an algorithm to automatically store to
a database new objects as they get close to the eyes of the
robot (the cameras). To do so, we compute a depth perception
map [3], [4] of the image to determine if something is in
close proximity and under the robot’s scrutiny. If so, its
representation is stored to a database to be later remembered
and recognized.

We chose the Scale Invariant Feature Transform (SIFT) [5]
algorithm to enact our recognition. We also used this al-
gorithm to match corresponding points in pairs of stereo
images, thus computing the disparity or depth of these points.
By using this algorithm for detecting distance, we define a
new object as a cluster of SIFT features in close proximity
to the cameras, while already saved objects are detected
continuously in the input images by the SIFT algorithm.
Finally, the recognized objects in the robots field of vision
are inserted into the egocentric map.

In the next section we shall describe our spatial model in
a general sense, leaving out the implementation details to be
discussed in the third section. Then, in the forth section, we
describe an experiment in which the functioning of our work
is illustrated, and present experimental results to validate
the approach. Finally, we finish with some conclusions and
future work.

II. ARCHITECTURE

The architecture, displayed in Figure 2, has several inter-
connected modules to form a sensing-deliberation-actuation
chain. It is motivated on the Itti and Koch model [6] where
stimuli from various sources are represented and combined
into a single salience map. Then, the point that maximizes
this map is selected, as the one winning the robot attention.
Finally the robot gazes towards the new selected attention
point.

The ego-sphere keeps a short-memory of the previously
looked upon positions, in the form of an inhibition-of-return
mechanism (IOR). The IOR information reduces the salience
levels of the already observed locations. The resulting be-
havior is the capability of the robot to fully explore its
environment without being stuck on the absolute saliency
maxima of the salience maps.

Our work adds a level of abstraction, the concept of
objects, to the previous architecture. Before, the world con-
sisted in basic salient signals, now there are already distinct
object. To acquire this knowledge the robot has to solve two
problems. What and when to learn a new object. A new object
is learned when it is detected in close proximity of the robot.
The object is assumed to consist in the image patch that is
close to the robot. The proximity is defined has a arms length
distance, i.e., the reachable objects.

saved, the objects are stored together with a “label” that is
simply a number (the order of appearance). When the robot
has the possibility to ask humans around him for the names
of the objects it is discovering and storing, new possibilities
concerning associating object representations to names arise.

III. IMPLEMENTATION

In this section we provide the details to perform object
segmentation and recognition.

Many different approaches have been used in computer
vision to enable recognition, for instance, eigenspace match-
ing has been used successfully by Schiele [7], others have
used Speeded Up Robust Features (SURF) [8], and many
have benefited from David Lowe’s Scale Invariant Feature
Transform (SIFT) [5]. Our approach, the latter approach,
solves both problems of object segmentation and recognition.
We chose SIFT over eigenspace matching for reasons such
as invariance to scale and excelling in cluttered or occluded
environments (as long as three SIFT features are detected,
the object is recognized). And while the SURF algorithm
is faster and performs generally well, SIFT’s recognition
results are still superior [9]. The setback about using this
algorithm is that it takes a lot of processing time, the most
efficient implementations are not able to run it in real time
(24 FPS) [10].

SIFT [5] is an algorithm that extracts, features from an
image. These features are computed from histograms of the
gradients around the key-points, and are not only scale invari-
ant features, but also invariant to affine transformations (e.g.,
rotations invariant). Furthermore, they are robust to changes
in lighting, robust to non-extreme projective transformations,
robust up to 90% occlusion, and are minimally affected by
noise. We use the SIFT algorithm to enable the recognition
in our system because of all these powerful characteristics.
Due to the nature of the SIFT features, its second drawback
is the inability to extract features from a texture-less object,
as shown in Figure 3: few or no features, in yellow dots,
are found in areas with homogeneous color, such as on the
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Fig. 2. System architecture, after introducing the modules presented here
(dark red border): object recognition, depth perception, and a new map, the
objects map.
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Fig. 3. Example of SIFT feature extraction; the yellow dots correspond to
the extracted features positions.

table, on the ground, or on the wall.

A. Depth Perception

The common way to determine depth, with two stereo
cameras, is by calculating disparity. Disparity is defined as
the subtraction, from the left image to the right image, of the
2D coordinates of corresponding points in image space. To
calculate depth we require the knowledge of the following
camera parameters:

« focal length f;

« camera baseline [3;

« pixel dimension 7.
Also, we need to correctly match a point of the environment,
seen in both stereo images, with pixel coordinates (x1,y1)
in the first image and (x2,y2) in the second. The point’s
coordinates in the camera references are (X1,Y1, Z) for the
first camera and (Xo,Ys,Z) for the second. Armed with
all this information we can calculate how far away the
matched point is (depth Z) by derivation (1), and illustrated
in Figure 4.

— X1
{7%:]6)?2 Sy Z(x1—x2) = f (X1 — X2)

S Z = S
Y (21— 22)
where 0 = X; — Xo.

Some ways to match corresponding points can be: pixel by
pixel probabilistic matching with a Bayesian formulation [4];
or histogram matching of the neighborhood of the pixel [11].

The SIFT features, with their invariance and robustness,
enact a way to solve the problem of matching corresponding
points in stereo images. We generate a sparse disparity
map by extracting the SIFT features from stereo images,
and look for matches between both sets. Assuming that
the robot’s eyes are roughly aligned in the horizontal (i.e.,

mis-alignment of under 30 pixels) we compute the disparity
between matching features from the pair of stereo images.
Matches that have a high horizontal disparity are assumed
to be part of an object in close proximity to the robot’s
face and matches with low horizontal disparity belong to
the “background.” Matches with high vertical disparity or
negative horizontal disparity are outliers.

Using a batch of real images we get the following results
summarized in Table I. In the first column we have the
number of features detected in the left image, in the second
column we display the number of matches found between
the left image features and the right image features, while
on the third column we show how many of those matches
were outliers.

TABLE 1
SUMMARY OF DISPARITY MATCHING RESULTS.

images “ features [ matches [ outliers
total 27564 9545 165
percentage 100 34.6 0.5

Comparing the extracted features of different images in
different resolutions, a threshold for the horizontal disparity
Ty, was found empirically to be the width of the image
divided by 6.4. Moreover, the vertical threshold T}, to de-
termine outliers was also empirically found to be the height
of the image divided by 16.

If the matches between detected features are close enough
(each match having its horizontal disparity greater than the
threshold), the group is stored to the database as a new object.
Only the features that are correctly matched between the
two stereo images with high horizontal disparities are stored,
because only these features are believed to belong to the

[
Z
Camera
Reference
) Frame
Focal Point :
B
f
"

(X1¥q) (%,,¥5)

Fig. 4. Simple camera model to calculate depth, f: focal distance, 3:
distance separating the parallel cameras, ~: pixel-to-meter ratio in the
camera sensors, (1,y1): pixel coordinates of point we wish to calculate
depth, Z: depth.

3051



(b) Right image

Fig. 5. Matching SIFT features in a stereo images: features in yellow;
matched features in blue.

close object. For instance, the features from the background
being seen by a hole in the object are discarded.

Figure 5(a) and Figure 5(b) exemplify in blue crosses
the features that are correctly matched between the two
stereo images as being the same, and therefore stored to
the database as a new object (if not recognized as part of an
already known object).

B. Recognition

To decide upon the presence of an object in the image,
SIFT relies on a voting mechanism that is implemented by a
Hough transform. Defining pose as the position, rotation and
scale of an object, each match votes on an object-pose pair
in the image. The Hough transform is computed to identify
clusters of matches belonging to the same object. Finally,
a verification through least-mean-squares is conducted for

'-"fazﬁﬂg i A S

(a) Object saved to database; Yellow: SIFT fea-
tures, blue: SIFT features saved to the database

(b) Red: recognized object, yellow: SIFT features, purple: SIFT features
matched with the database

Fig. 6. Recognition of saved object in the environment

consistent pose parameters along all matches (verifying if
the matches found have correct relative positions).

After experimenting with several objects, having the robot
store them to the database and then holding them farther
and farther away, the algorithm was able to recognize them
until roughly two meters away, when the number of extracted
features declines significantly. Of the many features stored in
the database and shown in blue crosses in Figure 6(a), only
the few extracted ones, depicted in purple filled squares, are
needed to recognize the object (encased in a red frame) in
Figure 6(b).
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C. Database and Mapping

New objects are stored into a database, which links object
identifiers (labels) to sets of SIFT features. Each set contains
a label, if the labels are the same then the different sets are
considered to be of the same object. When known objects are
encountered in the environment, their positions are mapped
into the ego-sphere [1]. Thus, an object representation is
stored in the database, while their positions, whenever recog-
nized by the robot, are represented solely in the ego-sphere.

The egocentric saliency map used for attention selection
is obtained from the composition of several specialized
maps: a visual map (M,;s), containing saliency information
extracted from visual features (e.g., motion, color), and an
auditory map (M,,4), obtained from sound stimuli captured
by the robot’s microphones [1]. These maps cover the entire
space surrounding the robot with a spherical coordinate
system (azimuth ¢ € [—180°;180°] and elevation ¢ €
[—90°; 90 °]). The saliency information stored in these maps
is continuously decayed (M,is(k + 1) = dyis Myis(k),
Meoua(k + 1) = daud Maua(k)), according to a forgetting
factor (dyis = dgug = 0.95). This factor coupled with a
maximum frame-rate of 20 FPS, yields a half-life of less
than a second, 14 frames.

In order to integrate the system described in this paper with
the attention selection mechanism, the recognized objects
are projected onto a third map (an object map M,y;). This
map, combined with the other two, contributes for the ego-
centric saliency map: Mg, = max(Myis, Moud, Mopj). As
the others, this map is also subject to a continuous decay of
its information, albeit with a much longer forgetting factor
(Mop;(k+ 1) = dobj Mopj(k), where dgp; = 0.9995). How
long should the robot remember where objects of interest
were? How long before such information is unreliable?
Those are not trivial questions to answer. Therefore, to fulfill
the practical goal of this work, of enabling the robot to switch
its attention focus from recognized object to recognized
object, even when such objects are not continuously in the
robots field of view, this simple decaying memory with such
a forgetting factor, that gives an half-life of little over one
minute, is sufficient.

To verify the repeatability of the mapping coordinates
(z,y) of an object in the image to coordinates in the ego-
sphere (19, ¢) several experiments were conducted. An object
was left on the table in front of the robot, while the robot’s
head slowly turned. From these experiments we conclude that
when the object is away from the limits of the image, it is
repeatedly mapped to the same location with an error under
one degree elevation and two degrees azimuth. When on the
verge of leaving the image, the error in mapping jumps up
to two degrees elevation and four degrees azimuth.

The objects are mapped into the ego-sphere as gaussian
peaks in salience. To cope with the mapping error, the
gaussian parameters used were oy = 30 and o, = 15.

IV. RESULTS

One of the experiments set up to show the correct recog-
nition and mapping consisted of:

1) showing two objects, in turn, for it to learn and store
to the database, a book and a magazine cover;

2) Then setting them up in front of him separated wide
enough so that when the robot’s attention would be on
one of this objects his field of vision will not cover the
second object as well;

3) Observing the resulting behavior.

The robot, upon recognizing the both previously known
objects in Figure 7(a), adds interest peaks in the ego-
sphere [1] (Figure 7(b)). The Attention Selection [1] module
informs the robot where to look, thus fixing its attention in
the first object (Figure 7(c)). After some time, a inhibition
region is added to the Inhibition-of-Return map [1] (Fig-
ure 7(d)) which nudges the attention selector to continue
exploring the environment of interesting points, the recog-
nized objects. The Attention Selection module then indicates
the robot to look at the now most salient region in the
memory, the second blob in the ego-sphere, the second object
in Figure 7(f). After some more time, the IOR-map decays
and another IOR region is added, now on top of the second
object location, effectively changing the robots attention back
to the first object. The behavior is a continuing switching of
the robot’s attention through the objects in the observable
environment, pausing to gaze at each object in turn.

V. CONCLUSIONS AND FUTURE WORK

This work aimed at the implementation of a spatial model
of the space surrounding the iCub robot that included the
salient objects which the robot encounters in its explorations.
This model is used to commute the robot’s attention focus
automatically between objects, while not being dependent on
the robot field of vision or on the objects visibility conditions.

To this end, we mapped recognized objects by introducing
salience peaks on the ego-sphere [1]. The robot can now
explore its environment based on low-level saliency but also
on high-level information, i.e. objects.

With this long-term memory implemented, the goal of
making this spatial model non-dependent on the robot’s field
of vision was achieved. As depicted in the results, the robot
returns its focus to previously observed objects that were at
the moment not in its field of view.

Currently, only the positions of the recognized objects
are used in our work. One avenue is tracking specific
objects in the environment. Another, is the search for specific
objects in the surroundings to ascertain its existence or not.
Additionally, the estimation of how far an object actually is,
in absolute terms, is another avenue of possible work to be
done.
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