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Abstract. In this paper we compare several optical flow based features in order
to distinguish between humans and robots in a mixed human-robot environment.
In addition, we propose two modifications to the optical flow computation: (i) a
way to standardize the optical flow vectors, which relates the real world motions
to the image motions, and (ii) a way to improve flow robustness to noise by se-
lecting the sampling times as a function of the spatial displacement of the target
in the world.
We add temporal consistency to the flow-based features by using a temporal-
Boost algorithm. We compare combinations of: (i) several temporal supports, (ii)
flow-based features, (iii) flow standardization, and (iv) flow sub-sampling. We
implement the approach with better performance and validate it in a real outdoor
setup, attaining real-time performance.

1 Introduction

Current trends in robotics research envisage the application of robots within public
environments helping humans in their daily tasks. Furthermore, for security and sur-
veillance purposes, many buildings and urban areas are being equipped with extended
networks of surveillance cameras. The joint use of fixed camera networks together with
robots in social environments is likely to be widespread in future applications.

The long term goal of this work, integrated in the URUS project[1], adopts this vi-
sion. The URUS project aims to achieve the interaction of robots with people in urban
public areas, to improve mobility in downtown areas. A key element of the project is a
monitoring and surveillance system composed by a network of fixed cameras that pro-
vide information about the human and robot activities. These multi-camera applications
must also consider constraints such as real-time performance and low-resolution images
due to limitations on communication bandwidth. Thus, It is fundamental to be able to
detect and categorize humans and robots using low resolution and fast to compute fea-
tures. We propose the use of optical flow derived features to address this problem.

Detection of humans in images is a very active research area in computer vision with
important applications such as pedestrian detection , people tracking and human activity
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recognition . These approaches aim to model the human limbs by using features such as
the silhouette [2, 3], image gradient [4], color distribution of each limb [5], optic flow [6,
7] and combinations of the features just mentioned. Detection of robots in images have
become a very popular field of research in the RoboCup1 framework, which focus on
cooperative robot interaction [8–10].We address the unexplored issue of discrimination
between these two classes, people and robots, which is essential to the development of
algorithms that deal withe.g.,surveillance, in mixed human-robot environments. Our
approach relies on the motion patterns extracted from optical flow, which have been
used previously by Violaet al. [6] and Dalalet al. [4, 7] in order to detect pedestrian
in images and videos. Violaet al.combine the optical flow with wavelet-based features
to model the people appearance, while Dalalet al. compute histograms of the flow
directions. Our work explores on this latter approach, comparing two types of features:

– Histogram of gradients (HOG), which computes the histogram of the optic flow
orientation weighted by its magnitude.

– Motion boundary histogram (MBH), computed from the gradient of the optical
flow. Similarly to HOG, this feature is obtained by the weighted histogram of the
optical flow’s gradient.

Using optical flow to separate robots’ movement from people’s movement is ap-
pealing for its independence on people and robot visual appearances (i.e., color, size
or shape), allowing it to model individuals with different outlooks, requiring only “dif-
ferent enough” patterns of movement. Since most current robots are rigid, while people
tend to not be rigid at all while moving about, this a reasonable assumption to start with.
Also, optical flow is not limited to high resolution images, being able to capture enough
information from only a limited amount of pixels.

In order to improve the classifier’s accuracy we also test the features with standard-
ized flow described in Section 2. Using localized detections on a world reference frame,
we scale the flow to its corresponding real-world metric value, creating invariance to the
target’s distance to the camera. In addition, we don’t use consecutive images to compute
flow which we refer to as spatial sub-sampled flow. We store a frame, wait for the target
to move in the real world, and only after its displacement is larger than a threshold, we
compute the optical flow from the stored frame to the present image.

The histogram-based features provide the data samples for the learning algorithm,
GentleBoost [11]. This algorithm is a very efficient and robust classifier that adds the
response of several base (weak) classifiers. In addition, we consider the temporalGentle-
Boost [12], a recent modification of GentleBoost that exploits the temporally local sim-
ilarities of the features.

In the next section we will describe the features employed to represent the targets.
Section 3 describes the learning algorithm used to learn how to distinguish people from
robots. We then present some results on a real live setting and finish with the conclu-
sions.

1 http://www.robocup.org/



2 Target Representation

In this work we assume that detection, tracking and localization (in the ground plane)
of targets in the camera’s field-of-view (FOV) is already done by any of the existing
algorithms available in the literature. For instance we use background subtraction [13]
for detection, nearest-neighbor for tracking and homographies for localization. Our goal
in this paper is to discriminate among different classes of targets using motion cues.

For (dense) optical flow computation, we use the implementation of [14]2, an algo-
rithm that introduces a new metric for intensity matching, based on the unequal match-
ing (i.e. unequal number of pixels in the two images can be correspondent to each
other). We chose this algorithm for its good balance between computational load and
robustness to noise [14].

2.1 Flow Standardization

The optical flow vectors encode the pixel displacement between two images, indepen-
dent of the corresponding real displacement. This means that an object closer to the
camera will have a large pixel displacement, while the same object will have small flow
vectors when moving far away. Thus, it is very difficult to match similar motions by
using the features computed directly from the optical flow. In order to overcome this
limitation we standardize the flow using the world coordinate locations of the moving
objects in the scene.

Given the displacement of each object in the world in metric coordinates, and in the
image in pixels, we derive a linear scale factor to relate the optical flow, in the image,
to the motion in the world. We illustrate this in Figure 1, where the gray arrows display
the optical flow in two different detections, the blue arrows represents the movement in
the world and the red arrows encode the mean displacement of the detected bounding
boxes in the image. The flow magnitude (f pixels), is larger when the object is close,
and smaller when farther away. The average displacement (P pixels) follows the same
behavior, while both world displacements (M meters) keep the same value. Therefore
the optical flows can be scaled to a similar value (f.M/P meters).

The flow standardization just described assumes that the motions of the target’s
limbs are aligned to the mean displacement of the target. If this assumption is violated,
the motions with other directions are projected to the direction aligned with the mean
displacement’s vector. Since in general, while a person is moving, their limb motions
will be parallel to the motion of her body, the assumption will hold for most of the
sequences.

The flow standardization described above causes the flow magnitude to be indepen-
dent to the target’s distance to the camera, but still dependent on the target’s velocity.
If an individual moves faster in some frames and slower in other frames, its displace-
ment will be different for the respective pairs of frames, so the features extracted will
be dissimilar.

We implement spatial sub-sampling of the optical flow in order to provide velocity
independence to the features. This comprises, for a given target, the selection of the

2 http://www.cs.umd.edu/˜ogale/download/code.html



Fig. 1. Smaller grey arrows: Optical flow; Big red arrow: mean pixel displacement in the image;
Big blue arrow: meter displacement in the world.

frames to compute the optical flow based on its displacement. The method includes
these steps: (i) store a frame; (ii) wait for the target to move more than a threshold
distance; (iii) compute the optical flow using the stored frame and the present frame.
In addition, the spatial sub-sampling provides invariance to changes on the sampling
frequency of the cameras.

2.2 Flow-based features

We compare two kinds of features: motion boundary histogram (MBH) [7] and his-
togram of gradients (HOG) [4], considering four kinds of flow data: (i) raw flow, (ii)
spatially sub-sampled, (iii) standardized flow and (iv) spatially sub-sampled and stan-
dardized flow.

MBH captures the local orientations of motion edges. We do it by considering the
two flow components (x andy) as independent images, and taking their gradients. To
extract the spatial information of the gradient image, two types of sampling are con-
sidered: dividing the image in cartesian or polar regions. HOG is computed in a similar
way but directly on the flow vectors, and we also consider the same two sampling types:
cartesian and polar. In total, we compare among sixteen different combinations of fea-
tures, samplings and flow data. In difference to the original MBH and HOG features,
that overlap sampling regions, we don’t consider overlapping.



3 Learning algorithm

The Boosting algorithm provides a framework to sequentially fit additive models in or-
der to build a final strong classifier,H(xi). This is done minimizing, at each round, the
weighted squared error,J =

∑N
i=1 wi(yi − hm(xi))2, wherewi = e−yihm(xi) are the

weights,N the number of training samples,xi is a feature andyi is the correspondent
class label. At each round, the weak classifier with lowest error is added to the strong
classifier and the data weights adapted, increasing the weight of the misclassified sam-
ples and decreasing correctly classified ones [11]. Then, in the subsequent rounds the
weak classifier focus on the misclassified samples of the previous round.

In the case of GentleBoost it is common to use simple functions such as regression

stumps. They have the formhm(xi) = aδ
[
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]
, wheref is the

number of the feature andδ is an indicator function (i.e.δ[condition] is one ifcondition
is true and zero otherwise). Regression stumps can be viewed as decision trees with
only one node, where the indicator function sharply chooses brancha or b depending
on thresholdθ and featurexf

i . To optimize the stump one must find the set of parameters
{a, b, f, θ} that minimizesJ w.r.t.hm. The optimala andb are obtained by closed form
and the value of pair{f, θ} is found using an exhaustive search [15].

A recent approach considers the temporal evolution of the features in the boosting
algorithm, improving the noise robustness and performance. Ribeiro et al. [12] model
temporal consistency of the features, by parameterizing time in the weak classifiers.
The Temporal Stumps compute the mean classification output of the regression stump,
in a temporal window of sizeT ,
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The temporal weak classifier of Eq. 1 can be viewed as the classic regression stump
with a different “indicator function”. IfT = 1 it becomes the original regression stump,
and forT > 1 the indicator function changes. The new indicator functions
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compute the percentage of points above and below the thresholdθ, in the temporal win-
dowT and for the feature numberf . The indicator functions with temporal consistency
in Eq. 2, can take any value in the interval[0 1], depending on the length of the tem-
poral window used. For example, ifT = 2 the functions can take3 different values,
∆T

+ ∈ {0, 1/2, 1}, if T = 3 can take four values,∆T
+ ∈ {0, 1/3, 2/3, 1} and so

on. The fuzzy output of the new “indicator function”,∆, represents the confidence of
threshold choice to use the data with temporal supportT . Thus, at each boosting round,
we use a weighted confidence of both branches, instead of choosing only one branch.

Using the weak classifier with temporal consistency of Eq. 1 in the cost function,
Ribeiro et al. [12] obtain closed expressions for the parametersa andb that minimize
the errorJ . The optimalf , θ andT are obtained by exhaustive search. The learning
algorithm shown in figure 2 is similar to GentleBoost, but optimizing the temporal
stump of Eq. (1).



1. Given:(x1, y1), . . . , (xN , yN ) wherexi ∈ X, yi ∈ Y = {−1, +1}, setH(xi) := 0,
initialize the observation weightswi = 1/N , i = 1, 2, . . . , N

2. Repeat form = 1, . . . , M

(a) Find the optimal weak classifierh∗m over(xi, yi, wi).
(b) Update strong classifierH(xi) := H(xi) + h∗m(xi)
(c) Update weights for examplesi = 1, 2, . . . , N , wi := wie

−yih∗m(xi)

Fig. 2.Temporal Gentleboost algorithm.

4 Results

We compute the 16 different combinations of flow-based features (Section 2.2) in three
scenarios: people walking, people loitering and robot moving. The motion patterns of
people walking and robot moving will be properly extracted by optical flow-based fea-
tures, so they are the nominal classification scenario. People loitering on the other hand,
is a difficult situation as it provides small optical flow values. Both people walking and
loitering are very common activities, therefore we decide to focus on them in this work.
Figure 3 shows the setup of each scenario, which includes video sequences from 10
cameras.

We grabbed five groups of sequences, where each one includes images from 10
cameras. One group with a person walking, another group with a different person walk-
ing, two groups with the same pioneer robot moving in two different conditions, and
the last group with a third person loitering. The people class videos have a total of 9500
samples of the optical flow and the robot class videos have a total of 4100 samples.
The segmentation and tracking of the moving objects in the scene are provided by: -
LOTS background subtraction for detection [13] and nearest neighbor for tracking. The
LOTS algorithm provides the bounding boxes of the regions of interest and its respec-
tive segmented pixels. Nearest neighbor is computed between the center points of the
two bounding boxes.

We follow a cross validation approach to compare the classification result of the
temporal GentleBoost algorithm. We build two different groups of training and testing
sets. The people loitering data is always in the testing set, each person belongs to the
training set for one of the experiments, and each pioneer robot sequence belongs to the
training set once. The Tables 4, 2 and 3 show the average of the recognition rate for each
frame using the two experiments. Each table summarizes the results for a fixed value
of temporal support,T , and we notice the large performance improvement brought
by the temporal support of the flow-based features when compared to the common
GentleBoost (T = 1).

We observe three general patterns from the recognition rate:

– The polar sampling of the images performs better than the cartesian counterpart.
It seems that the polar sampling is better suited for modeling the motion of the
peoples’ limbs, so it is easier to discriminate between people and robots.

– The Motion Boundary Histogram (MBH) feature has better performance than the
optical flow histogram. The MBH has a richer representation based on two images



Fig. 3.Experimental setup for training scenario

Feature sub-sampled+standardizedstandardizedsub-sampledraw flow

polar flow histogram 76.15 92.26 75.96 90.62
cartesian flow histogram 71.90 87.90 71.63 87.20

MBH cartesian 90.60 83.13 91.39 82.73
MBH polar 93.14 90.60 93.67 89.40

Table 1.Recognition rate of several features, using a maximum temporal supportT = 5 frames
of the temporal boost algorithm

Feature sub-sampled+standardizedstandardizedsub-sampledraw flow

polar flow histogram 76.71 87.23 76.82 85.68
cartesian flow histogram 78.71 85.18 78.74 84.13

MBH cartesian 79.79 75.48 79.98 74.65
MBH polar 88.80 83.87 88.94 81.30

Table 2. Recognition rate of several features, without temporal support (T = 1 frames) of the
temporal boost algorithm



Feature sub-sampled+standardizedstandardizedsub-sampledraw flow

polar flow histogram 77.23 95.43 77.77 93.02
cartesian flow histogram 73.64 89.32 74.22 88.52

MBH cartesian 91.68 87.59 92.25 85.25
MBH polar 94.58 91.41 94.58 91.01

Table 3.Recognition rate of several features, using a maximum temporal supportT = 10 frames
of the temporal boost algorithm

that extract the first order spatial derivatives of the optical flow, while the flow
histogram is a more efficient representation based on only one image, the optical
flow.

– The spatial sub-sampling of the optic flow computation has a positive effect on the
MBH features, while has a negative impact on the flow-based histogram features.
On one hand, it seems that the MBH feature needs optical flow measurements with
low levels of noise, which is provided by the spatial sub-sampling for computing the
optical flow. On the other hand, the evolution in time of the optical flow histogram is
better captured by the computation of the optical flow between consecutive images.

– The standardization of the optical flow has a very small improvement of the recog-
nition rate, because all the features compute normalized histograms that provide a
sort of standardization of the features.

From Table 3 we see that the best compromise between accuracy and robustness is
provided by the MBH polar using the spatial sub-sampling. Thus, we implemented this
feature in a C++ program that distinguishes between people and robots in real-time.

5 Conclusions

In this work we compared several optical flow based features to distinguish people
from robots. We propose a way to standardize the optical flow vectors, scaling them to
their corresponding metric value in the real-world, and also a more efficient and robust
way of computing the optical flow that subsamples the images on time using the spa-
tial displacement of the targets in the world. We used Temporal GentleBoost algorithm
for learning, which is able to improve the classification rate by considering previous
features’ values, thus including a temporal support of the features. We test for several
combinations of temporal supports, type of feature and flow standardization in order
to verify the combination with better performance and robustness. The application of
spatial sub-sampling to the optical flow reduces the computational load of the algorithm
while keeping similar results to its counterparts. These computational savings guaran-
tees real-time classification. The Motion Boundary Histogram feature with world spa-
tial sub-sampling of the optical flow and temporal support of 10 frames have a very
good trade-off between accuracy and robustness. We implement the combination just
mentioned, validating it in a outdoors setting that shows the generalization capabilities
of the proper combination of features, classifier and sampling approaches, providing a
very good performance.



Fig. 4. Examples of person and robot training samples (on top) and real-time classification in an
outdoors setting (bottom).
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