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Abstract. We propose an unsupervised learning algorithm for the ediim of
the number of components and the parameters of a mixturelmbsarts from a
single mixture component covering the whole data set (fbereavoiding the ill-
posed problem of the components’ initialization, savingpatomputational bur-
den). Then, it incrementally splits that component durirgegtation maximiza-
tion steps, thus exploiting the full space of solutionsofelhg a binary tree struc-
ture. After each component insertion it evaluates whetleeepting this new solu-
tion or discarding it according with the chosen informatieriterion. We show that
the method is faster that state-of-the-art alternativesnsensitive to initialization
(deterministic initialization strategy), and has betteata fits in average. This is
illustrated through a series of experiments, both with kgtic and real images.
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1. Introduction

Several technigues have been proposed in the literatutenBupervised learning, from
Kohonen maps [1], Growing Neural gas [2], k-means [3], toejpehdent component
analysis [4], [5], etc. Particularly successful is the Eotpéion Maximization algorithm
applied to finite mixture models. Fitting a mixture model e distribution of the data
is equivalent, in some applications, to the identificatibthe clusters with the mixture
components [6].

One of the most widely used distributions is the normal, ousa&an, distribution.
The normal distribution can be used to describe, at leasbappately, any variable that
tends to cluster around the mean. If data is generated by mirf Gaussians, the
clustering problem will reduce to the estimation of the nemtf Gaussian components
and their paramenters. Expectation-Maximization (EMp&tgm is well known and at-
tractive approach for learning the parameters of mixturdei[7], [6]. It always con-
verges to a local optimum [8], especially for the case of Narmixtures [6], [9]. How-
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ever, it also presents some drawbacks. For instance, ifre=ginea-priori specification
of the model order, namely, the number of components ane#slis are sensitive to
initialization.

The selection of the right number of componentsis a critgsale. The more compo-
nents there are within the mixture, the better the data fitheil Unfortunately, increasing
the number of components will lead to data overfitting anchttvéase in the computa-
tional burden. Therefore, finding the best compromise betweecision, generalization
and speed is an essential concern. A common approach tosaddigcompromise is to
try different hypothesis for the number of components, et selecting the best model
according to some appropriate model selection criteria.

1.1. Related Work

Different approaches can be used to select the best numbengfonents in a mixture
distribution. These can be divided into two main classéfsline andon-linetechniques.

The first ones evaluate the best model by executing indepéndes of the EM algo-
rithm for many different initializations, and evaluatingad estimate with criteria that pe-
nalize complex models (e.g. the Akaike Information Craer{AIC) [10], the Schwarz'’s
Bayesian Information Criterion [11], the Rissanen MinimDescription Length (MDL)
[12], and Wallace and Freeman Minimum Message Lenght (MML3]). All of these
criteria, in order to be effective, have to be evaluated f@rg possible number of mod-
els under comparison. Therefore, it is obvious that, foifga sufficient search range
the complexity goes with the number of tested models as waeh@amodel parameters.

The second ones start with a fixed set of models and sequgmiilist their con-
figuration (including the number of components) based ofeidifit evaluation criteria.
Pernkopf and Bouchaffra proposed a Genetic-Based EM Alyaricapable of learn-
ing gaussians mixture models [14]. They first selected thabar of components by
means of the minimum description length (MDL) criterion. Angbination of genetic
algorithms with the EM has been explored.

A greedy algorithm is characterized by making the locallyiropl choice at each
stage with the hope of finding the global optimum. Appliedhe EM algorithm, they
usually start with a single component (therefore sidegstepthe EM initialization prob-
lem), and then increase their number during the computatowever, the big issue in
these kind of algorithm is the insertion selection critari®eciding when inserting a
new component and how can determine the success or failtine stibsequent compu-
tation. At the time, no precise solution has been posteddoess this drawback. In 2002
Vlassis and Likas introduced a greedy algorithm for leagr@aussian mixtures [15].
They start with a single component covering all the datanTthey split an element and
perform the EM locally for optimizing only the two modifiedrmponents. Nevertheless,
the total complexity for the global search of the elementécsplittedO(n?). Subse-
quently, Verbeek et al. developed a greedy method to le@rgalissians mixture model
configuration [16]. Their search for the new componentsastd to take) (n). Greedy
algorithms mostly (but not always) fail to find the globallgtomal solution, because they
usually do not operate exhaustively on all the data. Ountegke try to overcome this
limitation by using a binary tree for deciding which compohkas to be replicated in
an exhaustive way. Besides, our recursive search by medhe bfnary tree costs only
O(logn).



1.2. Outline

In sec. 1.1 we analyze the state of the art of unsuperviseditepof mixture models.
In sec. 3 we introduce the proposed algorithm. Specificailydescribe its initialization
(sec. 3.1), the replication process (sec. 3.2), the stgppiteria (sec. 3.3).Then, in sec.
4 we study the particular case of Gaussian mixtures, andittieg of replication process
within this specific context (sec. 4.1). Then, in sec. 5 wecdbs our experimental set-
up for testing the validity of our new technique and in sec.é&awmpare our results
against some alternatives, either classical or cuttirgeeHinally, in sec. 7 we conclude
and propose directions for future work.

2. Model Selection Criterion: Minimum message length (MML)

The application of the EM algorithm for mixtures relies dfgrantly on thea-priori
knowledge of the number of componehtand their initialization. If values too far from
the optimal ones are chosen the algorithm may not be ableathrihe optimal solu-
tion. In [17] there is a comprehensive survey on the most-luathwn and used criteria.
We adopted the minimum message length (MML) criterion dgved in [18], which
formulation is:

c
n-w;

ﬁopt:argngn{fL(th)ﬁLﬁZln( 3 )+§(N+11n12n)} (1)
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which meaning with respect to the original MML and MDL has bekscussed in
[18].

3. Mixture Learning Algorithm

Our algorithm starts with a single component, with the redatnixture initialization
(sec. 3.1). Then, by following a binary tree structure (82.1) new classes are added by
means of replicating existing ones (sec. 3.2.2), once a fimghermore, the cost func-
tion (1) is evaluated in order to decide whether keeping scatiding the current mixture
(sec. 3.3). In the first case, the binary tree will be updatid the new solution. When
a new mixture element is added, it will become a child togettieh the original one.
Therefore, within our representation, its father dies, anly the two children survive.
Otherwise, in the second case (i.e. when the new mixturegumatiion is discarded), the
previous mixture will be restored as a starting point for & m®mponent replication,
and that node will never be proposed to have children anynkimally, when there will
no node eligible to have children (i.e. when all the comboret have been tried), the
algorithm terminates.



3.1. Parameters initialization

Before starting any computation, the first component (thlg arixture class) will be
automatically initialized to the whole data set paramet&lss means, e.g. in case of
normal mixture, the mean of the covariance relative to thele/data set, as follows:

1 N
Hdata,d = N Z"Eilv
i

Edata,i = <jz - ﬂdata><ji - ,L_Ldata>T
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whereN is the number of input data vectatsand D their dimensionality.

3.2. Component Replication

When a new class is introduced, the key points are:

e Whena component is insertedécision procegs
e Howthe considered component is addezp{ication procesk

Instead of deciding whether replicating a component or leerotwe sequentially
replicate all the components following binary tree struet{sec. 3.2.1). Moreover, in this
work we adopt a replication procedure (sec. 3.2.2) for agidicromponent rather than
the splitting concept, due to its ill-posedness. This véBult in a unique solution, side-
stepping the original problem. Then the EM is run for optimizthe mixture and finally
we decide if keeping the current solution of discarding gdxhon the cost function in
evaluated by (1).

3.2.1. Binary tree decision structure

We adopted a full binary tree - called also sometimes projpariptree or 2-tree - which
is a tree in which every node other than the leaves has twdrehil The binary tree is
used for deciding which particular component will be replédd. The structure we use
has the particularity that only the leaves contain a mixt@mponent. The data structure
organization is as follows:

e The initial tree starts with the root, only;

Each node has no children (so that it is a leaf) or two children

Only the leaves can contain the mixture components; wheass ¢ inserted by
a leaf replication, the latter was the father and now it bezomm child together
with the new inserted, creating a new parent without mixtm@ponents.

e The node eligible for being replicated are those of the &stllonly.

The binary tree serves only for the decision process, saathtite replicating pos-
sibilities are exploited.

3.2.2. Replication Process

Rather than the splitting operation, the replication pdage admits a unique solution.
This will side-step the ill-posedness of the original peshl A componentior,p will
be replicated exactly with its parametéts.p = Yorp_1,%0Lp—2,%0LD—n, Which



are the mean and the covariance matrix in the case of normalimes, into the new 4
andd s, with half of the original prior probability. Then, the EMegis will adapt the new
components to best cover the input data.

However, it is clear that even though the EM algorithm is téd@af modeling the
new component, if two of them are exactly superimposed withsame mean and co-
variance matrix the EM will not be able to evolve separatimgn, and then converging
to another (albeit local) minimum, different from the prews one. Therefore, here we
introduce a small variation on the replication procedurtife class parts (i.e. mean
and covariance matrix in case of gaussian mixture) will kecty cloned, except for the
class location within the data, i.e. its mean. This will bplieated apart from an > 0,
with the assumption:

E=le,€...,€
kA = fiorp + € [B = [oLD — € (3)
fim i = I iy = o

while the newa-priori probabilities will be:

1 1
waA = ZWoLD WwB = ZWOoLD (4)
2 2
_ This small variation will make the EM to escape from the diturain WhighﬁA and
Jp are exactly superimposed, which corresponds to have thelnlp = 94 = U5
component.

3.3. Updating Mixture: Decision Procedure Iteration Step

In our approach, at each new mixture configuration (addibiom component by means
of the replicating operation) the original EM is performeddrder to reach the local
best optimization of that distribution configuration. Ornibe re-estimation of the vector
parameten) has been computed in the EM step, our algorithm evaluatesuthrent
likelihood of each single components:

N
Acu7'7'(c) (19) = Z ln(wc ' pc(‘fi)) (5)
=1

During each iteration, the algorithm keeps memory of thevipres likelihood of
each mixture component,s; . (9).

Then, we defined our stopping criterion for the EM algorithmhanly when the total
distribution log-likelihood ceases increasing, but aldeew all each single component
no longer modifies, i.e.:

= ©)
Acu7'7'(c) (19) - Alast(c) (79)

Aincr(c) (19) - | Acurr(c) (19)

|- 100



where here/\mcr(c) (9) denotes the percentage increment in log-likelihood of tira-c
ponente, | - | is the module, or absolute value @Gf, andd < 1, e.g.d = 0.098. In our
experiments (see sec. 5) we considered a log-likelihoodmuting when the increment
is below0.098%. Besides, we used a percentage threshold rather than dntabsmue
for a better generalization.

This ensures that the before stopping the EM optimizatioearaponent is being
updated, therefore a local optimum is really reached.

4. Application to a Gaussian mixture density

4.1. Replication Process

It is worth noticing that the way the component is replicageghtly affects further com-
putations. For instance, consider a 2-dimensional casdjich anelongatedyaussian is
present. This component may be approximating two compavétti diverse configura-
tions: Either covering two smaller data distribution sptaced along the longer axis, or
two overlapped sets of data with different covariances,®d¢ replicating a component
is a ill posed problem and the best way to solve it depends @ptbblem at hand. In
this paper we make a choice suited to applications in colagiensegmentation whose
purpose is to obtain components with lower overlap. For ¢hse a reasonable way of
replicating is to put the new means at the two major semi-axig points. Doing so, the
new components will promote non overlapping components #inkde actual data set
reflects this assumption, it will result in faster convergen

To implement this replication operation we make use of thguar value decom-
position. A rectangulan x p matrix A can be decomposed as= USV”, where the
columns ofU are the left singular vectors, (which has the same dimension 4pis a
diagonal matrix with the singular values arranged in desitenorder, and’”' has rows
that are the right singular vectors.

More precisely, the original gaussians with parametiersp when replicated will
generate the two new componertand B, with means:

Sowp =USVT
g =Usdq Sqa= 544 (7)
A = poLD + €844 [iB = HOLD — €S4Uq

whered is the selected dimension.
The covariance matrixes will then be updated as:

Spa=54 Ya=Xp=USVT (8)

wherei,, .. is the first column ot/, ands, thed-dimensional element of.
The newa-priori probabilities will be:

1 1

waA = §wOLD wp = §wOLD (9)
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Figure 1. For each plot set: Generation mixture (blue) and the evaeduane (red) for FSAEM and FIGJ on the
same input sets. Moreover, the 3D histograms the bottomdn sabfigure represent: The generated mixture,
our algorithm’s estimated one, that estimated by [18], eetpely.

5. Experimental Validation

We will compare our procedure versus three well-kn@ffdine (see sec. 1.1) model se-
lection criteria, AIC, BIC, and MML (in the version describby (1)), and [18], both on
synthetic data (2D and 3D) and image segmentation. We eeal@ar technique’s per-
formances by comparing it against these algorithms by apgpthem to different multi-
dimensional input data, both synthetic data (artificiabygrated with a known mixture),
and real images (taken by a webcam or by our robotic platf@uabis cameras). Al-
though our proposed algorithm can be used for any kind ofumétwe mainly focussed
on Gaussian mixture, due their generality and wide usage.



It is worth noticing that although that algorithm has beemdestrated to be robust
and accurate for describing synthetic data, in [18] it haseen performed any exper-
iment on image segmentation. Contrariwise, we want to fomecase on image process-
ing, due to its relevant importance in several differen¢stfic fields, like robotics and
medicine. Therefore, testing these algorithms on imagesatation is an important part
of our study.

5.1. Initialization

The initialization is a main issue. We overcome this by a uaigetting, comprehending
a single mixture component. It is worth noticing that ouraaithm is deterministic: To
the same input always corresponds the same output.

However, AIC, BIC, MML, and [18] rely on their initializatio. Therefore, in or-
der to reduce this artifact, we adopted a common used sthaggroach, i.e. we aver-
aged the previous algorithms’ outputs 100 times, startiith different initial random
conditions.

2D Synthetic data
. #inital #detected | actual number| . . #% our vs . % log-likelihood | Normalized L2 | % Norm L2 dist
Input Algorithm #iter #time ) log-likelihood )
components of FIGJ time our vs FIGJ Distance our vs FIGJ
AIC from 1to 11 4 66 3.811764 -7403.656573 6.595441
BIC from 1to 11 4 64 3.810045 -7405.021887 6.382962
4-components|  MML from1to 11 6 4 56 1.022003 | 78.73612496| -7453.510519| 15.17315842 12.755668 -16.27158247
FIGJ) 11 4 142 3.312242 -8729.761818 0.073613
FSAEM 1 4 94 0.704311 -7405.181228 0.085591
AlC from 1to 23 9 96 17.074475 -8400.626025 34.796101
BIC from 1to 23 7 88 3.141896 -8428.323612 18.092732
8-components|  MML from 1to 23 9 8 64 2.691401 | 74.59609099| -8535.472681| 14.19557292 23.390192 99.94639739
FIG) 23 7 231 17.74719 -9798.154848 13.866861
FSAEM 1 8 529 4.50848 -8407.250632 0.007433

Table 1. Experimental results on synthetic data.

Pl (b el e e

(@) 3-componentgb) 3-components FIG(E) 11-component§d) 11-components FIGJ

FSAEM 3D estimate®D estimated mixture FSAEM 3D estimate®D estimated mixture
mixture mixture

Figure2. 3D Gaussian mixtures

In our experiments we used= 2.7 for 2D datag = 0.6 for the 3 and 11 components
3D Gaussian mixture data,= 0.1 for the 3D cylinder, the generic 3D figure and the
color images, and = 0.007 for the 3D shrinking spiral.



3D Synthetic data
#inital #detected | actual number #9% our vs % log-likelihood | Normalized L2 | % Norm L2 dist
Input Algorithm #iter #time ) log-likelihood 5
ponent: ts| of FIGJ time our vs FIGJ Distance our vs FIGJ
AlC from1to 8 5 47 0.566862 -13798.93271 578.789426
BIC from1to 8 4 54 0.5563 -13800.00784 486.775163
3D_3-components MML from1lto8 5 3 52 0.558664 | 85.80533562| -13799.41579| 25.22383455 693.330131 0.004692929
FIG) 8 3 77 1.27183 -18444.52515 48.09363
FSAEM 1 3 29 0.180532 -13792.10864 48.091373
AIC from 1 to 32 23 134 | 3.210384 -10679.3581 6248.514308
BIC from 1 to 32 16 176 | 3.141896 -10771.3229 5413.790139
3D_11-components|  MML from 1 to 32 18 11 144 | 3.168279| 66.96033444| -10741.69632| 22.68386415 5865.453957 4.
FIGJ 32 10 229 | 10.38861 -13818.98315 2086.57765
FSAEM 1 11 264 | 3.432362 -10684.30379 1982.376821

Table 2. Experimental results on synthetic data.

5.2. Experiment 1. Synthetic data

We divided these data in 2D and 3D input data set. Then, 2D Isaarp shared into
overlappingandnon-overlappingnixtures. Each input set is composed by 2000 points.
- 2D input data:These comprehend both overlapping and non overlappinggene
tion components. The description results are showed tegetth the original genera-
tion mixtures in Fig. 4.1.
- 3D input data:We used two mixture components, one with 3 and the other viith 1
generation classes. These are shown in Fig. 2.

5.3. Experiment 2: Colored real images

To our knowledge this is the first time [18] is applied to readge segmentation. We seg-
mented the images as 5-dimensional input in the (R,G,B)espad (x,y), i.e. a generic
input point was of kindp € (R, G, B, z,y). The color image segmentation results are
shown in Fig. 5.3. The set of images is divided into two gro§msme general images,
on the left (from (1) to (4)), and some images taken by the i€oémeras, on the right
(from (5) to (8)). For each group we show the original imaglesse obtained with [18],
and those obtained with our algorithm on the left, in the reddnd on the right, respec-
tively.

6. Discussions

Since now we use the following notation:

e FSAEM: Our algorithm;
e FIGJ: The approach proposed in [18].

We graphically showed the output results of our algorithm #ivat of [18] only, as
exponents of then-line techniques, in Fig. 4.1, and in Fig. 5.3, while AIC, BIC, and
MML are illustrated in tab. 1. The plots in Fig. 4.1 are dividato non overlapping mix-
tures on the left, and overlapping ones on the right. Eacpletibet is composed by the
graphical output representation for the 2-D point distiiiu (top) and the 3-D estima-
tion mixture histogram (bottom), composed by the generatedure, our algorithm’s
estimated one, that estimated by [18], respectively. Herslhow the representation for
different mixtures of 4, 5, 8, and 16 gaussian components.deta plots show the gen-
eration mixture (blue) and the evaluated one (red). On thi¢He data result from our
approach is shown, while on the right those of [18], relativéhe same input data set.
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Figure 3. Color images segmentation. From image (1) to (4) we tesdltforithms on well-known images,
or synthetic ones, and from (5) to (8) we exploit the alganishpossibilities on real images captured by our
robotic platform iCub’s cameras.

Real Images
. #inital # detected . . #% - % log-likelihood
Input | Algorithm nital etecte #iter #time N ou.r vs log-likelihood 0 log-ikel f_m
components| components FIGJ time our vs FIGJ incr
1 FIGJ 18 18 392 263.307626 65.46098213 -468089.7361 10.72963553
FSAEM 1 10 673 90.943868 -417865.4134
2 FIGJ 20 20 330 391.247999 96.64602221 -527746.5813 13.74918089
FSAEM 1 6 153 13.122371 -455185.7492
Fl 2 2 .479837 - 72.0772
3 CJ s S 335 533.47963 57.32574706 685872.0 21.06491496
FSAEM 1 14 313 227.658535 -541393.7074
2 FIGJ 34 34 466 | 1923.274434 88.74887061 -657578.044 14.00731491
FSAEM 1 15 975 216.390095 -565469.0166
5 FIGJ 34 34 514 | 2069.988404 95.65038327 -591302.6719 10.04804378
FSAEM 1 13 598 90.036562 -531888.3205
6 FIGJ 24 24 304 308.476958 9731314486 -455378.5028 13.0785465
FSAEM 1 7 104 8.288329 -395821.6135
7 FIGJ 16 16 402 242.379629 9325498638 -261622.9384 _65.16305039
FSAEM 1 5 152 16.348539 -432104.4256
s FIGJ 2 2 18 2.603419 -26.88771957 -457033.9839 23.47007425
FSAEM 1 3 58 3.303419 -349767.7685

Table 3. Experimental results on real images segmentation.

In tab. 1 we report:

The number of initial mixture components;

The number of detected components;

The actual number of components, i.e. that of the generatigture;

The number of total iterations;

The elapsed time;

The percentage difference in time for our algorittiffime ps 4 gas) With respect
to [18] (T'imerc.), evaluated agmeric. = eTFiI“;iFSAEM -100;

The final log-likelihood;

e The percentage difference in final log-likelihood for ow@ithm (LLrsarar)

. LL —LL ) .
with respect to [18] LL psapm), evaluated ag—FLGI=22ESABM . 1(0);




e The normalized L2 distance to the generation mixture wigpeet to [18].

6.0.1. Mixture precision estimation

A deterministic approach for comparing the difference lestwthe generation mixture
and the evaluated one is to adopt a unique distance meas{t8] Densert Al.exposed
three different strategies for computing such distances Khllback-Leibler, the Earh
Mover, and the Normalized L2 distance. The first one is notraginic, even though a
symmetrized version is usually adopted in music retrivalwdver, this measure can be
evaluated in a close form only with mono-dimensional garssi The second one also
suffers analog problems of the latter. The third choice]l§ina symmetric, obeys to the
triangle inequality and it is easy to compute, with a complrarecision with the other
two. We then used the last one. Its expression states [20]:

Z(:Nx(ﬂca ic) = Nw(ﬂaa ia) . Nw(ﬂb; ib)
where

Se=(C+ )7 and fie = Se(S; o + 55 i)

SIESRSEIE; 1 Ty—1% v-1 (10)
Zc:|277‘2a2bz; |2€$p{_§(ﬂa_ﬂb) E; Zczb_ (Ma_ﬂb)}
. 1 e e
~lon(Sa+ Sl beap { Lo — ) (S + 5 o — )}

6.0.2. Discussion

Our algorithm is better for image segmentation, becausefdst, it does not need any
initialization, and gives rise to better results in termshe compromise between com-
putational complexity and sufficient segmentation. Oneargue that the AIC, BIC, and

MML criterion together with FIGJ lead to more accurate reswihile our approach un-

derestimates the right number of components. Our approatiodstrates to be able to
produce images enough segmented to be realistically rapeadwithout considerable
loss of details (see Fig. 5.3). We think this rely on the regaients of the application

that uses the algorithm. On one hand, if one desires the égstentation can simply use
one of the four tested approaches, with a high number of&ta$3n the other hand, if
the best compromise between simplicity of representaton therefore lower compu-
tational burden for a likely further processing) and accyragether with a reasonable
elapsed time is a must, our approach demonstrates to beghertse

7. Conclusion

In this paper we proposed a unsupervised algorithm thamdearfinite mixture model
from multivariate data on-line. The algorithm can be appte any data mixture where
the EM can be used. We approached the problem from the oppweait of [18], i.e.
by starting from only one mixture component instead of saivenes and progressively
adapting the mixture by adding new components when nege$3ar algorithm starts
from a single mixture component and sequentially both iases the number of compo-
nents and adapting their means and covariances. Therdfgrdo its unique initializa-



tion it is not affected by different possible starting psitike the original EM formula-

tion. Moreover, by starting with a single component the catapional burden is low at
the beginning, increasing only whether more componentsegyaired. Finally, we pre-
sented the effectivity of our technique in a series of sinadaxperiments with synthetic
data and real images, and we compared the results agaiagheach proposed in [18].
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