
Sequentially Greedy Unsupervised
Learning of Gaussian Mixture Models by

Means of A Binary Tree Structure

Nicola Greggioa,b 1, Alexandre Bernardinoa and José Santos-Victora

a Instituto de Sistemas e Robótica, Instituto Superior T́ecnico
1049-001 Lisboa, Portugal

b ARTS Lab - Scuola Superiore S.Anna, Polo S.Anna Valdera
Viale R. Piaggio, 34 - 56025 Pontedera, Italy

Abstract. We propose an unsupervised learning algorithm for the estimation of
the number of components and the parameters of a mixture model. It starts from a
single mixture component covering the whole data set (therefore avoiding the ill-
posed problem of the components’ initialization, saving also computational bur-
den). Then, it incrementally splits that component during expectation maximiza-
tion steps, thus exploiting the full space of solutions following a binary tree struc-
ture. After each component insertion it evaluates whether accepting this new solu-
tion or discarding it according with the chosen informationcriterion. We show that
the method is faster that state-of-the-art alternatives, is insensitive to initialization
(deterministic initialization strategy), and has better data fits in average. This is
illustrated through a series of experiments, both with synthetic and real images.

Keywords. Machine Learning, Unsupervised Clustering, Self-Adapting Expectation
Maximization

1. Introduction

Several techniques have been proposed in the literature forunsupervised learning, from
Kohonen maps [1], Growing Neural gas [2], k-means [3], to Independent component
analysis [4], [5], etc. Particularly successful is the Expectation Maximization algorithm
applied to finite mixture models. Fitting a mixture model to the distribution of the data
is equivalent, in some applications, to the identification of the clusters with the mixture
components [6].

One of the most widely used distributions is the normal, or Gaussian, distribution.
The normal distribution can be used to describe, at least approximately, any variable that
tends to cluster around the mean. If data is generated by a mixture of Gaussians, the
clustering problem will reduce to the estimation of the number of Gaussian components
and their paramenters. Expectation-Maximization (EM) algorithm is well known and at-
tractive approach for learning the parameters of mixture models [7], [6]. It always con-
verges to a local optimum [8], especially for the case of Normal mixtures [6], [9]. How-

1Corresponding Author: Nicola Greggio; E-mail: ngreggio@ist.ist.utl.pt.

jasv
Text Box
11th International Conference on Intelligent Autonomous Systems (IAS-11), Ottawa, Canada - Aug 30, Sept 1, 2010

ever, it also presents some drawbacks. For instance, if requires thea-priori specification
of the model order, namely, the number of components and its results are sensitive to
initialization.

The selection of the right number of components is a criticalissue. The more compo-
nents there are within the mixture, the better the data fit will be. Unfortunately, increasing
the number of components will lead to data overfitting and to increase in the computa-
tional burden. Therefore, finding the best compromise between precision, generalization
and speed is an essential concern. A common approach to address this compromise is to
try different hypothesis for the number of components, and then selecting the best model
according to some appropriate model selection criteria.

1.1. Related Work

Different approaches can be used to select the best number ofcomponents in a mixture
distribution. These can be divided into two main classes:off-lineandon-linetechniques.

The first ones evaluate the best model by executing independent runs of the EM algo-
rithm for many different initializations, and evaluating each estimate with criteria that pe-
nalize complex models (e.g. the Akaike Information Criterion (AIC) [10], the Schwarz’s
Bayesian Information Criterion [11], the Rissanen MinimumDescription Length (MDL)
[12], and Wallace and Freeman Minimum Message Lenght (MML) [13]). All of these
criteria, in order to be effective, have to be evaluated for every possible number of mod-
els under comparison. Therefore, it is obvious that, for having a sufficient search range
the complexity goes with the number of tested models as well as the model parameters.

The second ones start with a fixed set of models and sequentially adjust their con-
figuration (including the number of components) based on different evaluation criteria.
Pernkopf and Bouchaffra proposed a Genetic-Based EM Algorithm capable of learn-
ing gaussians mixture models [14]. They first selected the number of components by
means of the minimum description length (MDL) criterion. A combination of genetic
algorithms with the EM has been explored.

A greedy algorithm is characterized by making the locally optimal choice at each
stage with the hope of finding the global optimum. Applied to the EM algorithm, they
usually start with a single component (therefore side-stepping the EM initialization prob-
lem), and then increase their number during the computation. However, the big issue in
these kind of algorithm is the insertion selection criterion: Deciding when inserting a
new component and how can determine the success or failure ofthe subsequent compu-
tation. At the time, no precise solution has been posted to address this drawback. In 2002
Vlassis and Likas introduced a greedy algorithm for learning Gaussian mixtures [15].
They start with a single component covering all the data. Then they split an element and
perform the EM locally for optimizing only the two modified components. Nevertheless,
the total complexity for the global search of the element to be splittedO(n2). Subse-
quently, Verbeek et al. developed a greedy method to learn the gaussians mixture model
configuration [16]. Their search for the new components is claimed to takeO(n). Greedy
algorithms mostly (but not always) fail to find the globally optimal solution, because they
usually do not operate exhaustively on all the data. Our technique try to overcome this
limitation by using a binary tree for deciding which component has to be replicated in
an exhaustive way. Besides, our recursive search by means ofthe binary tree costs only
O(log n).

1.2. Outline

In sec. 1.1 we analyze the state of the art of unsupervised learning of mixture models.
In sec. 3 we introduce the proposed algorithm. Specifically,we describe its initialization
(sec. 3.1), the replication process (sec. 3.2), the stopping criteria (sec. 3.3).Then, in sec.
4 we study the particular case of Gaussian mixtures, and the tuning of replication process
within this specific context (sec. 4.1). Then, in sec. 5 we describe our experimental set-
up for testing the validity of our new technique and in sec. 6 we compare our results
against some alternatives, either classical or cutting-edge. Finally, in sec. 7 we conclude
and propose directions for future work.

2. Model Selection Criterion: Minimum message length (MML)

The application of the EM algorithm for mixtures relies significantly on thea-priori
knowledge of the number of componentsk and their initialization. If values too far from
the optimal ones are chosen the algorithm may not be able to reach the optimal solu-
tion. In [17] there is a comprehensive survey on the most well-known and used criteria.
We adopted the minimum message length (MML) criterion developed in [18], which
formulation is:

ϑ̄opt = arg min
ϑ̄

{ −L
(

X |ϑ̄
)

+
N

2

c
∑

i=1

ln
(n · wi

12

)

+
c

2
(N + 1 − ln 12n)

}

(1)

which meaning with respect to the original MML and MDL has been discussed in
[18].

3. Mixture Learning Algorithm

Our algorithm starts with a single component, with the relative mixture initialization
(sec. 3.1). Then, by following a binary tree structure (sec.3.2.1) new classes are added by
means of replicating existing ones (sec. 3.2.2), once a time. Furthermore, the cost func-
tion (1) is evaluated in order to decide whether keeping or discarding the current mixture
(sec. 3.3). In the first case, the binary tree will be updated with the new solution. When
a new mixture element is added, it will become a child together with the original one.
Therefore, within our representation, its father dies, andonly the two children survive.
Otherwise, in the second case (i.e. when the new mixture configuration is discarded), the
previous mixture will be restored as a starting point for a new component replication,
and that node will never be proposed to have children anymore. Finally, when there will
no node eligible to have children (i.e. when all the combinations have been tried), the
algorithm terminates.

3.1. Parameters’ initialization

Before starting any computation, the first component (the only mixture class) will be
automatically initialized to the whole data set parameters. This means, e.g. in case of
normal mixture, the mean of the covariance relative to the whole data set, as follows:

µdata,d =
1

N

N
∑

i

xN
d

Σdata,i = 〈x̄i − µ̄data〉〈x̄i − µ̄data〉
T

(2)

whereN is the number of input data vectorsx̄, andD their dimensionality.

3.2. Component Replication

When a new class is introduced, the key points are:

• Whena component is inserted (decision process);
• How the considered component is added (replication process).

Instead of deciding whether replicating a component or another, we sequentially
replicate all the components following binary tree structure (sec. 3.2.1). Moreover, in this
work we adopt a replication procedure (sec. 3.2.2) for adding a component rather than
the splitting concept, due to its ill-posedness. This will result in a unique solution, side-
stepping the original problem. Then the EM is run for optimizing the mixture and finally
we decide if keeping the current solution of discarding it based on the cost function in
evaluated by (1).

3.2.1. Binary tree decision structure

We adopted a full binary tree - called also sometimes proper binary tree or 2-tree - which
is a tree in which every node other than the leaves has two children. The binary tree is
used for deciding which particular component will be replicated. The structure we use
has the particularity that only the leaves contain a mixturecomponent. The data structure
organization is as follows:

• The initial tree starts with the root, only;
• Each node has no children (so that it is a leaf) or two children;
• Only the leaves can contain the mixture components; when a class is inserted by

a leaf replication, the latter was the father and now it becomes a child together
with the new inserted, creating a new parent without mixturecomponents.

• The node eligible for being replicated are those of the last level only.

The binary tree serves only for the decision process, so thatall the replicating pos-
sibilities are exploited.

3.2.2. Replication Process

Rather than the splitting operation, the replication procedure admits a unique solution.
This will side-step the ill-posedness of the original problem. A component̄ϑOLD will
be replicated exactly with its parametersϑ̄OLD = ϑOLD−1, ϑOLD−2, ϑOLD−n, which

are the mean and the covariance matrix in the case of normal mixtures, into the new̄ϑA

andϑ̄B, with half of the original prior probability. Then, the EM steps will adapt the new
components to best cover the input data.

However, it is clear that even though the EM algorithm is capable of modeling the
new component, if two of them are exactly superimposed with the same mean and co-
variance matrix the EM will not be able to evolve separating them, and then converging
to another (albeit local) minimum, different from the previous one. Therefore, here we
introduce a small variation on the replication procedure. All the class parts (i.e. mean
and covariance matrix in case of gaussian mixture) will be exactly cloned, except for the
class location within the data, i.e. its mean. This will be replicated apart from anǫ > 0,
with the assumption:

ǭ = [ǫ, ǫ, . . . , ǫ]

µ̄A = µ̄OLD + ǭ; µ̄B = µ̄OLD − ǭ

lim
ǫ→0

µ̄A = lim
ǫ→0

µ̄B = µ̄OLD

(3)

while the newa-priori probabilities will be:

wA =
1

2
wOLD wB =

1

2
wOLD (4)

This small variation will make the EM to escape from the situation in whichϑ̄A and
ϑ̄B are exactly superimposed, which corresponds to have the only ϑ̄OLD ≡ ϑ̄A ≡ ϑ̄B

component.

3.3. Updating Mixture: Decision Procedure Iteration Step

In our approach, at each new mixture configuration (additionof a component by means
of the replicating operation) the original EM is performed in order to reach the local
best optimization of that distribution configuration. Oncethe re-estimation of the vector
parameterϑ̄ has been computed in the EM step, our algorithm evaluates thecurrent
likelihood of each single componentc as:

Λcurr(c)(ϑ) =

N
∑

i=1

ln(wc · pc(x̄i)) (5)

During each iteration, the algorithm keeps memory of the previous likelihood of
each mixture componentΛlast(c)(ϑ).

Then, we defined our stopping criterion for the EM algorithm not only when the total
distribution log-likelihood ceases increasing, but also when all each single component
no longer modifies, i.e.:

c
∑

i=1

|Λincr(i)(ϑ)| 6 c · δ

Λincr(c)(ϑ) = |
Λcurr(c)(ϑ) − Λlast(c)(ϑ)

Λcurr(c)(ϑ)
| · 100

(6)

where hereΛincr(c)(ϑ) denotes the percentage increment in log-likelihood of the com-
ponentc, | · | is the module, or absolute value of(·), andδ ≪ 1, e.g.δ = 0.098. In our
experiments (see sec. 5) we considered a log-likelihood notgrowing when the increment
is below0.098%. Besides, we used a percentage threshold rather than an absolute value
for a better generalization.

This ensures that the before stopping the EM optimization nocomponent is being
updated, therefore a local optimum is really reached.

4. Application to a Gaussian mixture density

4.1. Replication Process

It is worth noticing that the way the component is replicatedgreatly affects further com-
putations. For instance, consider a 2-dimensional case, inwhich anelongatedgaussian is
present. This component may be approximating two components with diverse configura-
tions: Either covering two smaller data distribution sets,placed along the longer axis, or
two overlapped sets of data with different covariances, etc. So, replicating a component
is a ill posed problem and the best way to solve it depends on the problem at hand. In
this paper we make a choice suited to applications in color image segmentation whose
purpose is to obtain components with lower overlap. For thiscase a reasonable way of
replicating is to put the new means at the two major semi-axis’ end points. Doing so, the
new components will promote non overlapping components and, if the actual data set
reflects this assumption, it will result in faster convergence.

To implement this replication operation we make use of the singular value decom-
position. A rectangularn x p matrix A can be decomposed asA = USV T , where the
columns ofU are the left singular vectors,S (which has the same dimension asA) is a
diagonal matrix with the singular values arranged in descending order, andV T has rows
that are the right singular vectors.

More precisely, the original gaussians with parametersϑ̄OLD when replicated will
generate the two new componentsA andB, with means:

Σ̄OLD = USV T

ūd = U∗,d sd = Sd,d

µ̄A = µ̄OLD + ǫsdūd µ̄B = µ̄OLD − ǫsdūd

(7)

whered is the selected dimension.
The covariance matrixes will then be updated as:

Sd,d = sd ΣA = ΣB = USV T (8)

whereūmax is the first column ofU , andsd thed-dimensional element ofS.
The newa-priori probabilities will be:

wA =
1

2
wOLD wB =

1

2
wOLD (9)

4-components
FSAEM FIGJ

−10 −8 −6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Reference (blue) and estimated (red) covariances

−10 −8 −6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Reference (blue) and estimated (red) covariances

8-components
FSAEM FIGJ

−10 −8 −6 −4 −2 0 2 4 6

−8

−6

−4

−2

0

2

4

6
Reference (blue) and estimated (red) covariances

−10 −8 −6 −4 −2 0 2 4 6

−8

−6

−4

−2

0

2

4

6
Reference (blue) and estimated (red) covariances

Figure 1. For each plot set: Generation mixture (blue) and the evaluated one (red) for FSAEM and FIGJ on the
same input sets. Moreover, the 3D histograms the bottom in each subfigure represent: The generated mixture,
our algorithm’s estimated one, that estimated by [18], respectively.

5. Experimental Validation

We will compare our procedure versus three well-knownoff-line(see sec. 1.1) model se-
lection criteria, AIC, BIC, and MML (in the version described by (1)), and [18], both on
synthetic data (2D and 3D) and image segmentation. We evaluated our technique’s per-
formances by comparing it against these algorithms by applying them to different multi-
dimensional input data, both synthetic data (artificially generated with a known mixture),
and real images (taken by a webcam or by our robotic platform iCub’s cameras). Al-
though our proposed algorithm can be used for any kind of mixture, we mainly focussed
on Gaussian mixture, due their generality and wide usage.

It is worth noticing that although that algorithm has been demonstrated to be robust
and accurate for describing synthetic data, in [18] it has not been performed any exper-
iment on image segmentation. Contrariwise, we want to focusmore on image process-
ing, due to its relevant importance in several different scientific fields, like robotics and
medicine. Therefore, testing these algorithms on image segmentation is an important part
of our study.

5.1. Initialization

The initialization is a main issue. We overcome this by a unique setting, comprehending
a single mixture component. It is worth noticing that our algorithm is deterministic: To
the same input always corresponds the same output.

However, AIC, BIC, MML, and [18] rely on their initialization. Therefore, in or-
der to reduce this artifact, we adopted a common used standard approach, i.e. we aver-
aged the previous algorithms’ outputs 100 times, starting with different initial random
conditions.

2D Synthetic data

Input Algorithm
inital # detected actual number

iter # time
% our vs

log-likelihood
% log-likelihood Normalized L2 % Norm L2 dist

components components of components FIGJ time our vs FIGJ Distance our vs FIGJ

4-components

AIC from 1 to 11 4 66 3.811764 -7403.656573 6.595441

BIC from 1 to 11 4 64 3.810045 -7405.021887 6.382962

MML from 1 to 11 6 4 56 1.022003 78.73612496 -7453.510519 15.17315842 12.755668 -16.27158247

FIGJ 11 4 142 3.312242 -8729.761818 0.073613

FSAEM 1 4 94 0.704311 -7405.181228 0.085591

8-components

AIC from 1 to 23 9 96 17.074475 -8400.626025 34.796101

BIC from 1 to 23 7 88 3.141896 -8428.323612 18.092732

MML from 1 to 23 9 8 64 2.691401 74.59609099 -8535.472681 14.19557292 23.390192 99.94639739

FIGJ 23 7 231 17.74719 -9798.154848 13.866861

FSAEM 1 8 529 4.50848 -8407.250632 0.007433

Table 1. Experimental results on synthetic data.

(a) 3-components
FSAEM 3D estimated
mixture

(b) 3-components FIGJ
3D estimated mixture

(c) 11-components
FSAEM 3D estimated
mixture

(d) 11-components FIGJ
3D estimated mixture

Figure 2. 3D Gaussian mixtures

In our experiments we usedǫ = 2.7 for 2D data,ǫ = 0.6 for the 3 and 11 components
3D Gaussian mixture data,ǫ = 0.1 for the 3D cylinder, the generic 3D figure and the
color images, andǫ = 0.007 for the 3D shrinking spiral.

3D Synthetic data

Input Algorithm
inital # detected actual number

iter # time
% our vs

log-likelihood
% log-likelihood Normalized L2 % Norm L2 dist

components components of components FIGJ time our vs FIGJ Distance our vs FIGJ

3D 3-components

AIC from 1 to 8 5 47 0.566862 -13798.93271 578.789426

BIC from 1 to 8 4 54 0.5563 -13800.00784 486.775163

MML from 1 to 8 5 3 52 0.558664 85.80533562 -13799.41579 25.22383455 693.330131 0.004692929

FIGJ 8 3 77 1.27183 -18444.52515 48.09363

FSAEM 1 3 29 0.180532 -13792.10864 48.091373

3D 11-components

AIC from 1 to 32 23 134 3.210384 -10679.3581 6248.514308

BIC from 1 to 32 16 176 3.141896 -10771.3229 5413.790139

MML from 1 to 32 18 11 144 3.168279 66.96033444 -10741.69632 22.68386415 5865.453957 4.993862989

FIGJ 32 10 229 10.38861 -13818.98315 2086.57765

FSAEM 1 11 264 3.432362 -10684.30379 1982.376821

Table 2. Experimental results on synthetic data.

5.2. Experiment 1: Synthetic data

We divided these data in 2D and 3D input data set. Then, 2D sample are shared into
overlappingandnon-overlappingmixtures. Each input set is composed by 2000 points.

- 2D input data:These comprehend both overlapping and non overlapping genera-
tion components. The description results are showed together with the original genera-
tion mixtures in Fig. 4.1.

- 3D input data:We used two mixture components, one with 3 and the other with 11
generation classes. These are shown in Fig. 2.

5.3. Experiment 2: Colored real images

To our knowledge this is the first time [18] is applied to real image segmentation. We seg-
mented the images as 5-dimensional input in the (R,G,B) space and (x,y), i.e. a generic
input point was of kind:p ∈ (R, G, B, x, y). The color image segmentation results are
shown in Fig. 5.3. The set of images is divided into two groups: Some general images,
on the left (from (1) to (4)), and some images taken by the iCub’s cameras, on the right
(from (5) to (8)). For each group we show the original images,those obtained with [18],
and those obtained with our algorithm on the left, in the middle, and on the right, respec-
tively.

6. Discussions

Since now we use the following notation:

• FSAEM: Our algorithm;
• FIGJ: The approach proposed in [18].

We graphically showed the output results of our algorithm and that of [18] only, as
exponents of theon-line techniques, in Fig. 4.1, and in Fig. 5.3, while AIC, BIC, and
MML are illustrated in tab. 1. The plots in Fig. 4.1 are divided into non overlapping mix-
tures on the left, and overlapping ones on the right. Each subplot set is composed by the
graphical output representation for the 2-D point distribution (top) and the 3-D estima-
tion mixture histogram (bottom), composed by the generatedmixture, our algorithm’s
estimated one, that estimated by [18], respectively. Here we show the representation for
different mixtures of 4, 5, 8, and 16 gaussian components. The data plots show the gen-
eration mixture (blue) and the evaluated one (red). On the left the data result from our
approach is shown, while on the right those of [18], relativeto the same input data set.

Original Image FIGJ FSAEM Original Image FIGJ algorithm FSAEM

(1) 20 40 60 80 100 120 140 160

20

40

60

80

100

120
20 40 60 80 100 120 140 160

20

40

60

80

100

120 (5) 20 40 60 80 100 120 140 160

20

40

60

80

100

120
20 40 60 80 100 120 140 160

20

40

60

80

100

120

(2) 20 40 60 80 100 120 140 160 180 200

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160 180 200

10

20

30

40

50

60

70

80

90

100 (6) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140
20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

(3) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

(7) 20 40 60 80 100 120 140 160

20

40

60

80

100

120
20 40 60 80 100 120 140 160

20

40

60

80

100

120

(4) 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

(8) 20 40 60 80 100 120 140 160

20

40

60

80

100

120
20 40 60 80 100 120 140 160

20

40

60

80

100

120

Figure 3. Color images segmentation. From image (1) to (4) we tested the algorithms on well-known images,
or synthetic ones, and from (5) to (8) we exploit the algorithms possibilities on real images captured by our
robotic platform iCub’s cameras.

Real Images

Input Algorithm
inital # detected

iter # time
% our vs

log-likelihood
% log-likelihood

components components FIGJ time our vs FIGJ incr

1
FIGJ 18 18 392 263.307626

65.46098213
-468089.7361

10.72963553
FSAEM 1 10 673 90.943868 -417865.4134

2
FIGJ 20 20 330 391.247999

96.64602221
-527746.5813

13.74918089
FSAEM 1 6 153 13.122371 -455185.7492

3
FIGJ 23 23 335 533.479837

57.32574706
-685872.0772

21.06491496
FSAEM 1 14 313 227.658535 -541393.7074

4
FIGJ 34 34 466 1923.274434

88.74887061
-657578.044

14.00731491
FSAEM 1 15 975 216.390095 -565469.0166

5
FIGJ 34 34 514 2069.988404

95.65038327
-591302.6719

10.04804378
FSAEM 1 13 598 90.036562 -531888.3205

6
FIGJ 24 24 304 308.476958

97.31314486
-455378.5028

13.0785465
FSAEM 1 7 104 8.288329 -395821.6135

7
FIGJ 16 16 402 242.379629

93.25498638
-261622.9384

-65.16305039
FSAEM 1 5 152 16.348539 -432104.4256

8
FIGJ 2 2 18 2.603419

-26.88771957
-457033.9839

23.47007425
FSAEM 1 3 58 3.303419 -349767.7685

Table 3. Experimental results on real images segmentation.

In tab. 1 we report:

• The number of initial mixture components;
• The number of detected components;
• The actual number of components, i.e. that of the generationmixture;
• The number of total iterations;
• The elapsed time;
• The percentage difference in time for our algorithm(T imeFSAEM) with respect

to [18] (T imeFIGJ), evaluated asTimeF IGJ−TimeF SAEM

TimeF IGJ
· 100;

• The final log-likelihood;
• The percentage difference in final log-likelihood for our algorithm(LLFSAEM)

with respect to [18](LLFSAEM), evaluated asLLFIGJ−LLFSAEM

LLFIGJ
· 100;

• The normalized L2 distance to the generation mixture with respect to [18].

6.0.1. Mixture precision estimation

A deterministic approach for comparing the difference between the generation mixture
and the evaluated one is to adopt a unique distance measure. In [19] Jensenet Al.exposed
three different strategies for computing such distance: The Kullback-Leibler, the Earh
Mover, and the Normalized L2 distance. The first one is not symmetric, even though a
symmetrized version is usually adopted in music retrival. However, this measure can be
evaluated in a close form only with mono-dimensional gaussians. The second one also
suffers analog problems of the latter. The third choice, finally is symmetric, obeys to the
triangle inequality and it is easy to compute, with a comparable precision with the other
two. We then used the last one. Its expression states [20]:

zcNx(µ̄c, Σ̄c) = Nx(µ̄a, Σ̄a) · Nx(µ̄b, Σ̄b)

where

Σ̄c =(Σ̄−1
a + Σ̄−1

b)−1 and µ̄c = Σ̄c(Σ̄
−1
a µ̄a + Σ̄−1

b µ̄b)

zc =|2πΣ̄aΣ̄bΣ̄
−1
c |

1

2 exp

{

−
1

2
(µ̄a − µ̄b)

T Σ̄−1
a Σ̄cΣ̄

−1
b (µ̄a − µ̄b)

}

=|2π(Σ̄a + Σ̄b)|
1

2 exp

{

−
1

2
(µ̄a − µ̄b)

T (Σ̄a + Σ̄b)
−1(µ̄a − µ̄b)

}

(10)

6.0.2. Discussion

Our algorithm is better for image segmentation, because it is fast, it does not need any
initialization, and gives rise to better results in terms ofthe compromise between com-
putational complexity and sufficient segmentation. One canargue that the AIC, BIC, and
MML criterion together with FIGJ lead to more accurate results, while our approach un-
derestimates the right number of components. Our approach demonstrates to be able to
produce images enough segmented to be realistically reproduced without considerable
loss of details (see Fig. 5.3). We think this rely on the requirements of the application
that uses the algorithm. On one hand, if one desires the best segmentation can simply use
one of the four tested approaches, with a high number of classes. On the other hand, if
the best compromise between simplicity of representation (and therefore lower compu-
tational burden for a likely further processing) and accuracy together with a reasonable
elapsed time is a must, our approach demonstrates to be the best one.

7. Conclusion

In this paper we proposed a unsupervised algorithm that learns a finite mixture model
from multivariate data on-line. The algorithm can be applied to any data mixture where
the EM can be used. We approached the problem from the opposite way of [18], i.e.
by starting from only one mixture component instead of several ones and progressively
adapting the mixture by adding new components when necessary. Our algorithm starts
from a single mixture component and sequentially both increases the number of compo-
nents and adapting their means and covariances. Therefore,due to its unique initializa-

tion it is not affected by different possible starting points like the original EM formula-
tion. Moreover, by starting with a single component the computational burden is low at
the beginning, increasing only whether more components arerequired. Finally, we pre-
sented the effectivity of our technique in a series of simulated experiments with synthetic
data and real images, and we compared the results against theapproach proposed in [18].

Acknowledgements

This work was supported by the European Commission, ProjectIST-004370 RobotCub
and FP7-231640 Handle, and by the Portuguese Government - Fundação para a Ciência
e Tecnologia (ISR/IST pluriannual funding) through the PIDDAC program funds and
through project BIO-LOOK, PTDC / EEA-ACR / 71032 / 2006.

References

[1] T. Kohonen, “Analysis of a simple self-organizing process.” Biological Cybernetics, vol. 44, no. 2, pp.
135–140, 1982.

[2] B. Fritzke, “A growing neural gas network learns topologies.” Adv ances in Neural Inform ation Pro-
cessing Systems 7 (NIPS’94), MIT Press, Cambridge MA, pp. 625–632, 1995.

[3] J. B. MacQueen, “Some methods for classification and analysis of multivariate observations.”Proceed-
ings of 5th Berkeley Symposium on Mathematical Statistics and Probability., pp. 281–297, 1967.

[4] P. Comon, “Independent component analysis: a new concept?” Signal Processing, Elsevier, vol. 36,
no. 3, pp. 287–314, 1994.

[5] A. Hyvärinen, J. Karhunen, and E. Oja, “Independent component analysis,”New York: John Wiley and
Sons, vol. ISBN 978-0-471-40540-5, 2001.

[6] G. McLachlan and D. Peel, “Finite mixture models.”John Wiley and Sons, 2000.
[7] G. McLachlan and K. T., “The em algorithm and extensions,” New York: John Wiley and Sons, 1997.
[8] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihoodestimation from incomplete data via the

em algorithm,”J. Royal Statistic Soc., vol. 30, no. B, pp. 1–38, 1977.
[9] L. Xu and J. M., “On convergence properties of the em algorithm for gaussian mixtures,”Neural Com-

putation, vol. 8, pp. 129–151, 1996.
[10] Y. Sakimoto, M. Iahiguro, and G. Kitagawa, “Akaike information criterion statistics,”KTK Scientific

Publisher, Tokio, 1986.
[11] G. Schwarz, “Estimating the dimension of a model,”Ann. Statist., vol. 6, no. 2, pp. 461–464, 1978.
[12] J. Rissanen, “Stochastic complexity in statistical inquiry.” Wold Scientific Publishing Co. USA, 1989.
[13] C. Wallace and P. Freeman, “Estimation and inference bycompact coding,”J. Royal Statistic Soc. B,

vol. 49, no. 3, pp. 241–252, 1987.
[14] F. Pernkopf and D. Bouchaffra, “Genetic-based em algorithm for learning gaussian mixture models,”

IEEE Trans. Patt. Anal. Mach. Intell., vol. 27, no. 8, pp. 1344–1348, 2005.
[15] N. Vlassis and A. Likas, “A greedy em algorithm for gaussian mixture learning,”Neural Processing

Letters, vol. 15, pp. 77–87, 2002.
[16] J. Verbeek, N. Vlassis, , and B. Krose, “Efficient greedylearning of gaussian mixture models,”Neural

Computation, vol. 15, no. 2, pp. 469–485, 2003.
[17] A. Lanterman, “Schwarz, wallace and rissanen: Intertwining themes in theories of model order estima-

tion,” Int’l Statistical Rev., vol. 69, pp. 185–212, 2001.
[18] A. Figueiredo and A. Jain, “Unsupervised learning of finite mixture models,”IEEE Trans. Patt. Anal.

Mach. Intell., vol. 24, no. 3, 2002.
[19] J. H. Jensen, D. Ellis, M. G. Christensen, and S. H. Jensen, “Evaluation distance measures between

gaussian mixture models of mfccs,”Proc. Int. Conf. on Music Info. Retrieval ISMIR-07 Vienna, Austria,
pp. 107–108, October, 2007.

[20] P. Ahrendt, “The multivariate gaussian probability distribution,”
http://www2.imm.dtu.dk/pubdb/p.php?3312, Tech. Rep., January 2005.

