UNIVERSIDADE T  ECNICA DE LISBOA
INSTITUTO SUPERIOR T ECNICO

Object component models using Gabor Iters for visual
recognition

Plinio Moreno Lopez
(Mestre)

Dissertacao para a obtercao do Grau de Doutor em
Engenharia Electroecnica e de Computadores

Orientador: Doutor Jos Alberto Rosado dos Santos Victor
Co-orientador: Doutor Alexandre Jos Malheiro Bernardino

dri

Presidente:  Reitor da Universidade Tecnica de Lisboa
Vogais:
Doutor Alberto Sanfeliu Cores
Doutor Auelio Joaquim de Castro Campilho
Doutor Jos Alberto Rosado dos Santos Victor
Doutor Mario Alexandre Teles de Figueiredo
Doutor Fabrizio Smeraldi
Doutor Alexandre Joe Malheiro Bernardino

Setembro de 2008






Abstract

The primate visual system is extremely successful and e cient in # challenging task of
recognizing objects in complex scenes. A key component of thengpate visual system is
a massive utilization of neuronal circuits located in the lovevel visual cortex areas, with
responses similar to Gabor functions. These functions have impemmt properties for image
analysis such as selectivity to orientation, scale and frequgnand being specially suited to
characterize image texture.

In this thesis we explore the properties of Gabor functions ithe context of component-
based object recognition. Current component-based objectcegnition approaches represent
objects as constellation of sub-parts, dividing the problem ithree stages: interest region
selection, image region description and, eventually, the r@gnition step. We introduce novel
methods using Gabor lters for interest point selection and imge region description. Per-
formance is evaluated with state-of-the-art object recogton architectures.

Regarding the selection of interest points, we de ne a new toped/n saliency function. We
encode the appearance of object components in terms of Galter responses to build the
saliency function. This saliency function computes a wavelgth pro le for every component,
being e ective in Itering out clutter and noisy features. The aim of this function is to reduce
the number of candidates for posterior analysis, but maintaing high recall rates.

Once the points of interest have been detected, we propose cegdescriptors with rich
and e cient matching representations that explore the full s¢ of parameters of Gabor Iters.
Local maxima of the Iter energy response is the criterion to dee two types of descriptors:
a feature vector formed by Gabor Iter responses that are chosespeci cally for each object
component and an alternative way to compute the SIFT descript.

We perform extensive tests in real scenarios, to show experimditahat our models for
interest point selection and local descriptor computation arevell suited for component-based
object recognition. Results show that approaches based on Gahlter responses outperform
state-of-the-art approaches in several aspects of the objeeicognition problem.

Keywords: object recognition, Gabor lters, top-down saliency, compoant recognition,
local descriptor, parameter selection
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Resumo

O sistema visual dos primatas desempenha, com sucesso e rapidameatefas complexas
como o reconhecimento de milhares de objetos. Uma componeritave do sistema visual
dos primatase a utilizacao macca de circuitos neurona localizados emareas corticais de
baixo nvel, com respostas semelhantes as furcees de GaboAs furcees de Gabor tém
propriedades importantes na aralise de imagem, devido a suselectividade a orientacao,

escala, e frequéncia, sendo particularmente adequadasaamderizacao de texturas.

Nesta tese iremos utilizar as propriedades das furcees de Gapara abordar o problema
do reconhecimento de objectos baseado em componentes. Oodes chssicos para abordar
este problema representam objectos como constelacoes depmmentes e separam o problema
em trés fases: seleacao das regiees de interesse, desaasoegioes de interesse, e nalmente
a fase de reconhecimento. Nesta tese introduzimos netodos iadares para os problemas da
seleacao de pontos de interesse e a descrcao das regioesidgem.

Relativamentea seleacao de pontos de interesse, de nimoma nova furcao de saliéncia
para cada componente de um objecto. Propee-se uma repressatada aparéncia dos com-
ponentes dos objectos baseada na resposta de Itros de Gaborgaalcular a furcao de
saliéncia. Estas furcees discriminativas calculam um pdrdo comprimento de onda para
cada componente, e podem ser usadas para reduzir o efeito da@louou objectos estran-
hos, e para reduzir o rumero de candidatos, sem rejeitar os coomgntes do objecto que se
pretendem reconhecer.

Estando os pontos de interesse detectados, a fase seguintee ouldl de descritores para
cada regiao.E explorada a selecao autoratica dos parametros de los de Gabor, usando
o crierio de maximos locais da resposta da energia do ltro.Este crierioe aplicado, a m
de nir dois tipos de descritores: (i) Um vector de caractersitas composto pelas respostas
de ltros de Gabor, escolhidos especi camente para cada compmte do objecto, e (ii) uma
maneira alternativa para calcular o descritor SIFT.

Sao feitas experiéncias de reconhecimento de objectoscemarios reais, que demonstram
a boa aplicabilidade dos modelos propostos nesta tese para acsele de pontos de interesse
e @lculo de descritores locais. Os resultados demonstram umlhoe desempenho das abor-
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dagens baseadas nos ltros de Gabor quando comparadas comau®s dentro do estado da

arte no reconhecimento de objectos.
Palavras chave: : Reconhecimento de objectos, Itros de Gabor, sali®ncia,aenheci-

mento de componentes de objectos, descritor local, seleatgoparametros
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Chapter 1
Introduction

The human visual system has the astonishing capability of recogmg and categorizing
thousands of objects in real time using just 2D image informatio[8]. This outstanding per-
formance is likely to result mainly from the union of two capaittities: (i) parallel processing of
a huge amount of low-level features, and (ii) developmentabgnition processes. By contrast,
the performance of computer vision approaches for object mgmition is still not comparable
with their biological analogies in these respects: real-timesponse, level of performance,
and the ability to handle thousands of objects. Nevertheless, ma work in visual object
recognition has made signi cant advances towards these goals.

Initial approaches to object recognition from images [10@,06, 92] proposed the use of
appearance to model the image of an object as a whole. Whilegimight seem a good idea to
solve the object recognition problem, it is very susceptible tbackground clutter and object
occlusions. These reasons led researchers to propose alternapm@oaches where appearance
is computed only at selected (local) regions of the image. Ehso-called \component-based
object recognition" approach has delivered various succedsfasults [69, 107, 81, 121]. All
these works exploit the idea of splitting the object in a group focomponents. Using this
approach, the usual procedure consists of two steps: (i) selectinbject components and
representing the appearance of each individual componentdai) combining the appearance
models of multiple object parts to build the overall object mdel. Once the model is built,
we are able to recognize objects by matching the model agaimsivel images.

In this thesis we adopt the component-based approach for objeecognition. We will
use local lters inspired by the human visual system (Gabor funabins) [20] to propose new
methods in object component selection and local appearan@presentation.

1



2 CHAPTER 1. INTRODUCTION

1.1 What is component-based object recognition?

In order to illustrate the idea, Figure 1.1 shows some snapshots thie component-based
object recognition steps. To recognize the woman in the Monada oil painting, we would
need to build a model, as follows:

1. Select the woman's most relevant points (i.e. salient poisitinterest points), plotted in
red in the second image of Figure 1.1.

2. Select a neighborhood around each interest point, in ordi&r de ne object components.
We observe in the third image of Figure 1.1 shows the object compents selected.
Then, represent the appearance of each component, using a latscriptor (i.e. feature
vector).

3. Build the object model by collecting the appearances of ¢hcomponents (parts). In
addition to appearances, the model can use shape informatiorel@tive position be-
tween components). Appearance-only information allows theetection of the pres-
ence/absence of the object, but it is very di cult to retrieve its location unless shape
information is also considered. In the rightmost image of Figer1l.1 we sketch Mona
Lisa's model, which includes the individual components and apal con guration of
the parts, represented with lines between local regions.

Figure 1.1: Component-based object recognition illustratio

Considering the steps described, we need to answer the follownnugestions:
Which points in the object should be used (interest point selectn)?

How to select the interest point's neighborhood and model its ggarance?

1py the Colombian artist Fernando Botero, 1977
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How to model the entire object, either considering the appeanaes alone or a joint
description of shape and appearances?

We shall make a survey of the state of the art for these problems, eefing to recent
approaches that have had a signi cant impact in the computerigion eld. First, we will look
at the interest point selection, followed by the local appearae representation approaches
and the global modeling frameworks for component-based obijegecognition.

1.1.1 Interest point selection

Macaques and humans have an impressive performance in realdimterpretation of complex
scenes. It seems that intermediate and high level processes in thgual system select just
a few regions in the visual eld to perform further processing,hus reducing the complexity
of scene analysis. This interest point selection, often referréal as \salient point detection,"
can be driven in a bottom-up or top-down fashion [54].

Bottom-up approaches for saliency search for variability obiv-level image attributes, such
as contrast, color and texture, in order to nd salient points. Thus, bottom-up approaches
can be seen as \image-oriented" processes. In di erence, topadoapproaches for saliency
search for regions in the images that are attached to a speci arget object. For instance,
when searching for faces in images we can guide the process, ohgma saliency function
speci ¢ to eye detection. Thus, top-down approaches can be klled as \object-oriented”
processes.

Although the presence of saliency mechanisms in the human visuas®m is clear, quan-
titative measures of saliency for di erent tasks remain unclea One can design various kinds
of saliency functions, based on what we want to \see." For examplé we want to have good
regions for tracking we can try to minimize the matching erno[81, 116], whilst if we want
to nd blobs at several scales, searching for local maxima of theaplacian of Gaussian [69]
is more appropriate. Saliency functions have been proposed detect image features like
corners [44], edges [11], ridges [66], and textured regigB6]. Other examples of saliency
functions are local maxima of scale-Shannon entropy [51],cathe \conspicuity map" [49] that
combines color, intensity and orientation. All these examplesf saliency functions exploit
the bottom-up paradigm to select image interest points.

Although recent works consider mostly bottom-up saliency mechasms, there is evidence
of the interaction between bottom-up and top-down processes nearly every search model in
the human visual system [14]. The visual search of object compoteduring the recognition
process can be boosted with some prior (top-down) informatiorbaut the regions we are
searching. A recent work considers top-down saliency, de ninhhe discriminant saliency



4 CHAPTER 1. INTRODUCTION

[39] concept, where salient points are extracted from the irga features that enable best
discrimination between one class (object) versus all the othelasses. Thus, we have groups
of salient points that are speci c for each object.

Salient point detection is followed by appearance represation, also referred to as \local
descriptor computation™ in the computer vision literature.

1.1.2 Local image descriptors

Local image descriptors are vectors of features that characize the vicinity of particular
points of the image. Such descriptors are used to distinguish legten di erent image patterns
and (ideally) should be invariant with respect to a set of imageransformations. Several types
of local descriptors have been proposed in the literature: gh@nt magnitude and orientation
maps [69], Gaussian derivatives [107, 81], rectangular feeds [118], di erential invariants
[57], steerable lIters [36], Gabor features [113, 59, 88],rtex-like (HMAX-based) features
[103], and the Scale Invariant Feature Transform (SIFT) [69]amongst others.

Local descriptors represent meaningful information of the mghborhood of an interest
point, where \meaningful” varies according to the goals. Fopbbject recognition, the most
critical requirement is that of allowing correct matches bveen corresponding regions of
object images, irrespective of the transformations applied tine original image (e.g. ane,
illumination, compression). In order to handle invariance tdmage transformations, three
main approaches have been widely adopted: (i) constructing @escriptor using features
whose response is invariant to image transformations [59, 10{0) conceiving interest point
detectors that provide additional parameters (e.g. a ne) that can be utilized to normalize
image regions [81, 70, 83] and (iii) performing an exhaustiveatching that considers a set of
possible transformations [116, 109]. The rst approach correspas to a truly invariant local
descriptor, the second approach assigns the invariance problémthe salient point detection,
and the third approach assigns invariance to the matching predure.

In terms of the operator applied to compute the representatig there are two main groups
of descriptors: Iter-based [36, 57, 113, 59, 103] ankistogram-basedlescriptors [69, 83, 4, 55].
Filter-based approaches compute responses of operators (e&pussian derivatives, Gabor
Iters, HMAX, di erential invariants) in order to build the local descriptors. Histogram-based
operators (e.g. SIFT, shape context) compute spatial statisticof gradient responses to build
the descriptors. Although histogram-based descriptors have beeaported to outperform
the Iter-based counterparts in a matching experiment [83]the HMAX descriptor based on
Gabor Iter bank responses has been recently successfully usedecagnition problems [109].

Another aspect that may have an important impact in the requird computational and
memory resources is the sampling method applied to compute theecal descriptor. Existing
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works have adopted either dense or sparse sampling approachesndeedescriptors [68, 109]
sample exhaustively the parameters of the operator used (e.gaks; orientation) and pixels
in the image neighbourhood under consideration. By contrasgparse representations [113,
107, 47, 70] select particular parameter values and pixelss(ially only at the interest point)
to sample the response of the operators. The sampling criterionagen is directly related to
the descriptor size, a critical aspect in storage capabilitiesad matching time requirements.

We have seen how to detect salient points in an image, which aretptive candidates
for object components. Then, we described each region arouriektdetected points for later
recognition. It remains to see how to combine the descriptor$ detected salient points, i.e.
candidates for components, in order to recognize objects images.

1.1.3 Models for object recognition

Component-based object models aim to combine the appearamufeseveral components in
order to represent each object as an entity. Probabilistic mads for object recognition are
the state-of-the-art techniques to tackle object detectiomnd localization. The probabilistic
formulation has an important property, the compatibility with machine learning algorithms.
That property allows to handle object recognition in two stags: model estimation (i.e. train-
ing, learning) and model classi cation (i.e. recognition). he goal of the model estimation
process is to compute the parameters' values that describesenglnt information about the
object class. Then, we match the model in new images, classifyingsgible new model
instances as positive or negative.

Several probabilistic models have been proposed in the litéwee [19, 96, 10, 114, 70].
While some of these models use the local descriptors exclusivelg.( appearance-only),
there are some others that explicitly incorporate the pose beeen object components (i.e.
shape-and-appearance). Intuitively, one cannot expect apprance information alone to allow
the correct detection of objects. However, several works haweported very good performance
[119, 19, 96, 109] using appearance-only models in clutterethges, due to the representation
of the object and its \context" (background). The advantags of these methods include
robustness to occlusions and non-rigid transformations of thé@ct. A major drawback of
appearance-only approaches is the di culty of object locaation in the image, although for
some classes it is possible to estimate their positions with additial assumptions.

Shape-and-appearance models were originally proposed bgdhier et. al. as the \parts
and structure model" [33]. The object consists of a set of templed (i.e. parts, compo-
nents) arranged in some geometric con guration (i.e. structa, shape). Recent works have
adopted this idea, considering several aspects of this apprbator example the constellation
model [10], e cient matching with pictorial structures [47], and probabilistic Hough voting
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[62], amongst others. Shape-and-appearance models are inegahless robust to non-rigid
transformations, but the shape is able to provide an estimate ohé location of the object.

Regarding the number of objects that the model is able to comr in each class, the
models are divided in two groups: (i) single object models, and)(category object models.
Single object recognition approaches [86, 107, 70, 4] aresigaed for recognizing a single
object instance, having very little or no intra-class variabity. Instead, approaches for object
categorization [47, 30, 121, 28] aim at grouping all similaibgects in the same class and must
handle larger in-class variability.

Additionally, the model estimation process can be carried ouitlaer in a supervised or in
an unsupervised manner, depending on the amount of informati@vailable to the algorithm.
In the case of single object recognition, a single sample can bedus® compute the model,
but for object categorization a large amount of segmented afud labeled images is usually
needed. There are several supervised approaches for objecegatization that attain good
performance [10, 95, 79, 121] at the cost of requiring a hugenmoer of samples. Recently,
weakly supervised approaches were proposed, where only imageeling is needed [30, 17].
Completely unsupervised approaches to image category detent [112, 9, 29, 25, 26] are
preferable because they avoid both image segmentation and ddihg.

Interest point
detection

Y
Local
descriptor

Object
model

Figure 1.2: Main steps of component-based object recognition

Figure 1.2 shows the steps required for component-based objestognition approaches
that we have described. The main advantages of these approaglaee: (i) invariance to rigid
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image transformations [69, 29, 12], (ii) tolerance to objestocclusion in the image [69, 29],
(i) some degree of robustness to non-rigid image transformatis [52, 81, 47, 29], and (iv)
excellent performance in single-object recognition [69, ]8dnd categorization [29, 25, 69].

This thesis proposes ideas, methods and techniques for interpsint detection and com-
putation of local descriptors, as will be detailed in the next sions.

1.2 Approach of this thesis

In this thesis we focus on models and techniques for interestipodetection and local de-
scriptor computation for component-based object recognitiothat are largely based on Gabor
Iters. The choice of Gabor functions to perform computer vigin and image processing tasks
has been motivated by biological ndings in the low-level aras of the primate visual cortex
[20] and more recently by simulations of the primate/human @ual system [49, 23].

A 2D Gabor function is formed by the product of a 2D Gaussian and eomplex expo-
nential function. Gabor functions act as low-level, oriemd edge and texture discriminators
that are sensitive to di erent frequencies and scale informaiin. In an information theoretical
sense, Gabor [38] has discovered that Gaussian-modulated com@gponentials provide the
best trade-o between spatial and frequency resolution, allawg simultaneously good spatial
localization and description of signal structures. Other inte¥sting properties of the Gabor
response are the invariance to changes in image contrast andustness with respect to small
translations of the image pattern in consideration.

Gabor lters have been widely used in numerous applications el as image compression
[101], optical ow computation [45], disparity estimation [, 99], texture segmentation [50,
24], human iris recognition [22], face recognition [122, 78], and object recognition [5, 109].
Finally, the recent proposal of fast methods for Gabor Iterig [7, 6] have further enhanced
the feasibility of Gabor based recognition.

In this thesis, we use Gabor functions to build models for compent-based object recog-
nition for two main reasons:

The rst two steps of component-based object recognition (sali point detection and
local descriptor computation) are low-level processes, whene @nalogy between Gabor
Iters and the low-level areas of the primate visual system canébestablished.

Gabor Iters have several degrees of freedom (i.e. functiora@ameters) that have not
been fully explored yet and can lead to simpler or more powelfmodels.

In the next sections we explain brie y our approaches for intest point selection and local
descriptor computation using Gabor Iters. We propose models tdetect and describe object
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components using Gabor Iters. Then, we utilize these models fperform component-based
object recognition.

1.2.1 Interest point selection

We start from the salient point detection, a problem that has ben primarily addressed in a
bottom-up way [69, 116, 81, 49, 52]. However, when searching filmage for speci c objects, it
IS convenient to incorporate object-related knowledge asmy as possible in the recognition
process, either to reduce the amount of possible candidates oritoprove the recognition
performance [39].

This thesis proposes an approach where saliency computationbiased to favor object
related points, eliminating bottom-up salient points very dierent from the object related
points and having very few misses of object points. This type obp-down saliency works
as a re nement stage after the bottom-up interest point seleath. Therefore, we manage
to improve the e ciency in the subsequent steps of recognitionyoreducing the number of
bottom-up interest point candidates for matching an object amponent.

The top-down saliency operator relies on the Gabor wavelergparameter that captures
the texture information of an object's interest point. For eery wavelength, the operator
sums the contribution of all Gabor Iter responses that were coputed at that particular
wavelength. Thus, the operator encodes the \wavelength sigii@e" of an interest point, a
coarse representation of an object component. The addition thfe saliency model during the
early stages of object recognition increases the e ciency ohé entire process, reducing the
number of component candidates for matching.

Additionally, the saliency operator is able to estimate the intnsic scale of object com-
ponents. The method proposed computes a very good approxinatiof the scaling factor
between regions, having properties similar to those of the Laalian of Gaussian, with added
versatility to compute the intrinsic scale in ridge features.

The addition of the top-down saliency module modi es the ardkecture scheme during
recognition, as can be seen in Figure 1.3.

1.2.2 Local descriptors

After detecting salient points, there is the problem of designgsuitable local image descrip-
tions. This aspect has been addressed in several recent works |69, 81, 121, 4, 36], shifting
the global matching problem to local matching.

We exploit the Gabor Iter properties to de ne a lter-based local descriptor and a
histogram-based descriptor. In both descriptors we explore tla@itomatic parameter selection
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Figure 1.3: Architecture of our component-based object recaitjon approach

approach. The idea is to select the most adequate Gabor Iterssing their response to de ne
several criteria.

Filter-based local descriptor

The design of a local descriptor must choose the size of a featuretee in accordance to

the requirements of a particular recognition problem. Densdescriptors may lead to very

large feature vectors, possibly leading to prohibitive compational and storage needs. The
HMAX [103] is an example of a state-of-the-art descriptor of thig/pe, composed by a set of
Gabor Iter-bank responses computed at every pixel in a neiglabphood across an exhaustive
set of scales and orientations.

Instead, sparse descriptors sample the image responses computeterobject component
image in a particular way, usually choosing responses only at theterest point. Sparse
descriptors have shown good recognition rates in several agplions [113, 122, 5, 47] along
with very e cient matching methods. These properties lead usd adopt the sparse sampling
approach for the Gabor Iter-based descriptor.

A widely used, straightforward approach is to build local desgtors using Gabor lters
responses, where the lIter parameters are xed [113, 24, 5, 7&2, 109]. The adaptation of
Iter parameters to particular object components was rst exploited in [53]. They propose
to select Gabor function parameters in a semi-automatic fashpusing the local maxima of
the \Information Diagram”. The Information Diagram plots t he magnitude of the Gabor
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response for several scales and orientations at an interest poiriVe expand the concept
of the Information Diagram to the Extended Information Diagam function, by adding the
frequency parameter to the function. The set of parameters @e, frequency and orienta-
tion) that best represent an object component corresponds todal maxima in the Extended
Information Diagram function.

We model an object component by means of a feature vector foechfrom Gabor lter
responses evaluated at the interest point of the object companie In order to compute Gabor
responses, we use the parameters provided by the Extended Infation Diagram. Thus, we
utilize a Iter bank matched to each object component in the sese of using the Iter bank
yielding the largest energy. This procedure automatically tects the adequate parameters of
the Gabor Iter to model a particular object component. We shd now see how to apply the
parameter selection approach with histogram-based descripsor

Histogram-based descriptors

Additionally, we explore the Gabor Iter parameter selectionto improve one of the most
successful local descriptors presented in the literature, theFl [70] descriptor. Due to its
particular way of extracting information from a local neiglborhood, the SIFT descriptor has
the best distinctiveness when compared to state-of-the-art lakcdescriptors [83]. SIFT is a
histogram-based descriptor that encodes local appearance gsthe image gradient in the
neighborhood of an interest point. The local neighborhood divided according to a cartesian
grid and the histogram of the gradient orientation, weightedy its magnitude, is computed
for each subimage.

SIFT uses the pixel di erences to estimate the image gradieng procedure sensitive to
noise and other artifacts. Instead, we propose to use the Gabor elt parameter selection,
picking the lter yielding the largest energy at every point n the neighborhood. In general,
the use of odd Gabor Iters instead of pixel di erences to appramate rst order image
derivatives allows us to improve the distinctiveness of the BT local descriptor.

So far we have presented a top-down saliency computation meththat is able to in-
troduce speci ¢ information of the object components and |lat descriptors that represent
component appearances. The remaining step is to choose an addgubject model for object
recognition.

1.2.3 Object recognition tests

In this thesis we have proposed models for interest point selewti and local descriptor com-
putation. These models t in the rst two steps of component-basé object recognition.
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The remaining step for performing full object recognition ighe choice of the model. In
order to evaluate the performance of the proposed componenbdels in di erent full object
recognition problems, we consider both appearance-only andage-and-appearance models.

All appearance-only object models share the same propertiesdairawbacks. However, a
recent model based on cortex-like mechanisms [109] has dem@istl very good performance
and versatility in various kinds of visual tasks. This appeararesonly architecture uses a dense
Gabor- Iter-based representation for local descriptors, all@ing us to compare the state-of-
the-art Iter-based descriptors against the histogram-based peesentations. Thus, within
this framework, we compare SIFT [70], HMAX [103], and the SIFTnnprovement described
in Section 1.2.2.

Regarding shape-and-appearance models, there are severatagghes in the literature, so
it is harder to compare methods in a qualitative manner. Nonéeless, the Pictorial Structure
[47] includes various state-of-the-art properties: (i) joinestimation of shape and appearance,
(i) availability of e cient methods for matching, and (iii ) robustness to partial occlusions
of the object. We assess the following models presented in thise#lis: (i) the top-down
discriminant saliency, (ii) the Iter-based, and (iii) the histogram-based descriptors.

The experiments in cluttered scenes show the capabilities of:

the top-down saliency model, bringing e ciency to the subseque steps of object
recognition,

the improved SIFT descriptor, increasing the matching capaliies of SIFT, and

the HMAX-based descriptor and matching procedure, demonstratindpat Gabor-based
approaches are feasible in the object recognition context.

1.3 Contributions

The general contribution of this thesis is the construction ohew models for component-
based approaches to object recognition. These models are gahim the sense that they can
capture most of the interest regions that may appear in everygiamages. More speci cally,
the contributions of this thesis are:

A top-down saliency model that extracts low-level wavelengtinformation of object
components, reducing the computational complexity in the sig@quent steps of object
recognition.
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A method to de ne the intrinsic scale of an object component. Tis method relies on
the wavelength pro le function and is able to estimate the intinsic scale in di erent
image structures.

A clear way to explore the parameter selection paradigm for ®ar Iter functions,
with the ability to construct two types of local descriptors, suiable for representing
the appearance of object components.

A lter-based local descriptor built with Gabor responses that sects the best parame-
ters according to each image region to form an adaptive Gabdter bank.

An improved SIFT local descriptor using Gabor lter parameter skction to determine
the best Iter to compute rst order image derivatives.

1.4 Thesis organization

This thesis is organized as follows: In Chapter 2 we tackle thetérest point selection prob-
lem, introducing a top-down saliency point detection procade that uses a frequency pro le
function. We also present a new way to compute the intrinsic scaté an image region, using
this novel frequency pro le function.

In Chapter 3 we introduce the parameter selection paradigm iorder to build a Iter-
based local descriptor. We explain rst how to build a good desgitor and we then add scale
and rotation invariance to that descriptor.

In Chapter 4 we use the parameter selection paradigm in order improve the SIFT
local descriptor. We explain how to select the Gabor Iters to ampute rst order image
derivatives, the initial step of SIFT computation.

In Chapter 5 we perform an object category detection experemt using an appearance-
only model to evaluate the improved SIFT descriptor, followeé by an object detection and
localization experiment that uses a shape-and-appearanceaeb[47] in order to evaluate the
top-down saliency model and the adaptive Gabor bank and SIFTegcriptors.

In Chapter 6 we draw the thesis conclusions and establish diremtis of future work.



Chapter 2
Interest point selection

Component-based approaches for object recognition represehbjects as collections of their
parts. When searching for learnt objects, the selection of camdites for object components
in new images is very important. Only \promising" points shoull be evaluated in the image;
otherwise, in the case of unseen cluttered scenes, matching canabeery computationally
expensive procedure. In order to avoid an exhaustive search, i@l authors utilize saliency
operators that act like attentional mechanisms, concentratig computational resources on
a few, highly promising points. The procedure to detect integ¢ points can be oriented
bottom-up or top-down. Bottom-up methods extract interest pints using only image data
criteria, while top-down methods also introduce task and coakt related information.

Most of the saliency functions proposed in the literature are imm-up processes. They
capture the variability of low-level signal attributes, like contrast, color, orientation or tex-
ture. This detection process does not rely on the informatioabout the type of object to be
recognized (the task).

Instead, top-down saliency methods are based on the task/goalsteiption to guide the
search process towards image regions that are likely to be padf the sought objects. They
are object or task-speci ¢ and require an initial learning phse, where the saliency lters are
designed based on a number of samples of the object regions.

We propose a top-down saliency mechanism that operates over tooh-up interest points
to vastly reduce the amount of candidates for matching/recaution. We design a novel
saliency operator, conceived to encode object componentamhation, which is based on
the isotropic wavelength (texture) characteristics of the ojgct component to detect. We
explain how to compute and match the top-down saliency modebif an object component
and show how the proposed method is able to reduce signi cantiheé number of candidates
for recognition.

The properties of the saliency function are also exploited fahe de nition of a novel

13
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method to compute the intrinsic scale of object components. Thiprocedure provides scale
invariance to the saliency model during the learning and detdon processes. In the nal

part of this chapter we evaluate the performance of the topedvn saliency method in a facial
landmark candidate selection task.

2.1 Related work

We start with a brief revision of the most relevant approaches fanterest point detection,
considering both bottom-up and top-down approaches.

2.1.1 Bottom-up interest point selection

Initial approaches for bottom-up interest point selection foused on locating image features
like edges and corners [44, 11]. The scale of the features warely addressed in these works
and although spatial support was considered, it usually had a & value during interest
point detection.

The spatial support of the feature is an important parameter tht one must take into
account. As pointed out by Crowley et al. [18], scale (i.e. spalisupport) should be used as
an additional parameter to build the shape model of an objecin that work, the scale-space
structure of a particular image was utilized to build a graph hat represents the shape of an
object. The scale-space structure comprises location of peakslaidges in the Di erence of
Gaussians [18] pyramid of the object, using both 2D (space) and 3Bcale-space) peaks.

However, it was only after the introduction of scale-space asdlsolution to the di usion
equation by Koenderink and Van Doorn [56, 58] that it was posdi to de ne scale-invariant
operators. Koenderink and Van Doorn introduced the Gaussianiation and its derivatives
of order n as solutions of the di usion equation applied to images. Latei.indeberg used
the scale-space formulation in order to introduce a method fdocating image features in
scale-space [66]. Lindeberg's method provides;(y;; si) points (wherex;y stand for position
and s for scale) by computing local extrema of scale-normalized apéors applied to the
imagel (x;y). Lindeberg de nes scale-normalized operators for blobs,rjations, edges, ridges
and local frequency estimation [66]. An appropriate identi ation of the scale of the image
features is essential to match object components correctly.

In practical terms, the scale invariance of any interest point ekector does not guarantee
awless matching of object components. In order to assess matchinapabilities, Mikolajczyk
and Schmid propose the repeatability criterion [80]. The ideof the criterion is that once
interest points are detected, the same points should be detedt@ any other image of the same
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object, up to occluded regions. They evaluated the robustness scale changes of several
operators: the Dierence of Gaussians, scale-space versions of gemaradient, Laplacian,
and Harris [44] cornernesg function. The best repeatability was achieved by the scale-
normalized Laplacian followed by the Di erence of Gaussian®G) operator.

Interest point detection should cope with viewpoint transformations as well. Mikolajczyk
and Schmid proposed in [82] an algorithm to provide local a nenvariance properties to
the scale-adapted Harris detector. The a ne shape of a point nhghborhood is estimated
based on the windowed second-order moment matrix that comp@en average of rst order
derivatives over the vicinity of an image point. The proposedlgorithm uses the eigenvalues
of the windowed second-order moment matrix as the initial vaks to search for the local
a ne parameters, such that two image patches related by an a netransformation become
identical. They show experimentally that a ne-covariant! regions can be matched in images
with severe viewpoint transformations. In a more recent work, Molajczyk et al. [84]
compare the repeatability of several a ne region detectors,ancluding that Maximally Stable
Extremal Region (MSER) [78] and Hessian-a ne [84] have betterapeatability in average.
MSER [78] are connected components of a thresholded image oat pixels have either larger
or smaller intensity than all pixels on its outer boundary. TheHessian-a ne [84] detector
selects local maxima of the Hessian matrix determinant and estines the shape adaptation
matrix in the points selected by the Hessian matrix. The Hessian-a e detector locates blobs
and ridges covariant to a ne transformations up to a rotation factor.

All previous methods rely on Gaussian derivatives to detect saht points in a bottom-up
fashion. There are other bottom-up techniques based on di emefunctions to detect interest
points. Kadir and Brady [51] de ne salient points based on locahaxima of Shannon entropy
along several scales. In the case of pixel intensities, the Shanremtropy has small values
in constant intensity regions, while it has larger values in inge regions with high intensity
variations. Later, Kadir et al. [52] added a ne invariance to the salient point detection,
showing better repeatability and matching results than Di eence of Gaussians and Harris-
a ne detectors.

Itti et al. [49] propose a salient point detection for visual aténtion applications. They
propose a biologically plausible architecture that builds a $ancy map by applying \center-
surround” lters sensitive to multiple scales, in color and intesity images and a Gabor
Iter bank sensitive to several scales and orientations. Then thmformation of all Iters is
combined across scales, building three \conspicuity maps" fortensity, color and orientation.
The conspicuity maps are normalized and summed into the nal sehcy map. In the last
step, they simulate visual attention by shifting the focus of atntion to the most salient

1Corresponding regions in the two images are called covariant.
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image location (i.e peak in the saliency map). After attendinghe current focus of attention,
the location is inhibited in the saliency map to force an attetion shift to the consecutive
most salient point. This attention-based saliency mechanism hasown performance similar
to the primate visual system for saliency-driven focal visual agintion.

We have brie y presented bottom-up salient point detection aproaches, applied to a va-
riety of tasks. Bottom-up approaches are \general" salient pot detection methods that can
be shared across several computer vision tasks, performing the saromputations regardless
of the system's goal. Points selected by bottom-up techniquearcbe used in any high-level
visual task, like shape recognition [85], object representatid70, 107, 81], visual attention
[49, 120], wide baseline stereo matching [78], and mobile rolmavigation [108]. Now we
revise approaches where salient point detection is guided irnt@-down manner by the task
and context dependent criteria.

2.1.2 Top-down interest point selection

Top-down approaches for salient point detection use task-specinformation to select the
points of interest that are relevant to the task, neglecting tk others. For instance, if we are
searching for oranges, we should reject any points not having a@tg enough red value in
their color information.

Several top-down interest point selection methods have beenoposed in the context of
feature tracking, one of the most important tasks in computer igion [72, 35, 111, 41, 116].
The points selected for tracking are the local minima of the teplate matching cost function,
which minimizes the error between image patches and a temfda under a set of possible
transformations applied to the template. Initial approache by Ferstner [35] and Harris
[44] consider translation transformations of the patches. LateTriggs [116] considers a wide
range of patch transformations, including a ne deformation ad illumination changes. Triggs
de nes a reduced scatter matrix (reduced in the sense that it ceiders a ne transformations
only) that evaluates the self-matching properties of an intest point. Interest point selection
relies on the minimum eigenvalue of the scatter matrix that rects the maximum permissible
errors in translation, rotation, and scale. We consider this terest point selection oriented
top-down because interest point locations depend on the imatgransformation (i.e. motion)
model. It is important to remark that the Harris corner detecor [44] has been referred to
as a bottom-up interest point detector in most of the works, but Tiggs [116] presents an
approach where the Harris detector is a particular case of a tafpwn salient point detector.

A recent work considers the idea of \discriminant saliency” [39where the salient points
are extracted from the features that enable best discriminain between one class and all
other classes. Gao and Vasconcelos [39] compute a saliency mamfiomages in the pos-
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itive class to select the most salient locations, their strength,ral scales. The discriminant
saliency map is a weighted sum of feature responses at every pixé order to consider
discrimination power between classes, the weight of each feaus the marginal diversity
[117]. Vasconcelos introduced the marginal diversity as a faee selection method, which
under some assumptions selects a subset of the feature space that im&es the mutual
information of class labels and features. Thus, weights enferéeatures that provide the best
recognition performance of a speci c class. This top-down satiey procedure selects the best
features ( lter, location, and scale) for each class and can heewed as a weakly supervised
method to perform image segmentation of an image class.

While Gao and Vasconcelos' discriminant saliency selects saliéaatures for each class, we
propose an approach where saliency is guided by object compaise We use the component's
appearance to de ne a saliency operator that captures textarrelated low-level properties of
an object part, creating a coarse component model. This sal®nmodel selects only a limited
number of image pixels as candidates for object components tecognize, thus discarding
irrelevant information. This approach is also addressed in ouarevious publications [87, 89].

2.2 Using texture for component-based saliency

When searching for an object component, we propose to use its dpetocal texture char-
acteristics as the main discriminant feature for selecting cdidate points. Obviously, this
does not prevent the use of other important feature dimension®.g. color), but here we
are only considering gray-scale information. Gabor Iters @& among the most successful
methodologies to extract texture information. After convoling an object component patch
with a particular Gabor Iter, we obtain a Iter response that r epresents the amount of over-
lap between the texture represented by the Iter and the textuve in the object component.
We will exploit the properties of Gabor Filters to represent ¢xture and introduce top-down
information to select object component candidates from a set mterest points.

2.2.1 Gabor functions

The 2D zero mean isotropic Gabor function is expressed as:

242
e 22 eiL(x cos()+ysin()) g 252 . (2.1)

2 2 ’

g;; (xy)=

where the parameters , , and are the wavelength (inverse of spatial frequency), orienta-
tion, and width (spatial support) of the Gabor function. Figure 2.1 shows the appearance of



18 CHAPTER 2. INTEREST POINT SELECTION

some Gabor kernels as a function of, , and
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Figure 2.1: Examples of Gabor functions. Each row shows the ¢eart of the Gabor function
of Equation (2.1) for di erent values of , , and . The last row shows the magnitude of
the lter for several widths. All images have equal size.

This conventional form of representing Gabor functions doasot provide a simple repre-
sentation of the Iter scale. In fact, a scale change of the Gabdunction must consider the
recalculation of two parameters: the width and the frequencyWe observe in Figure 2.1(c)
that the visual aspect of the Gabor function changes severely biganging only the Iter width
value (). In order to localize scaled versions of a reference waveletthe time-frequency
plane, the wavelet theory [74, 73] de nes a ratio that includs the scaling parameter and the
center frequency, as follows:

n

0
—: 2.2
< (22)
The Equation (2.2) expresses the center frequency of the scaldvelet ( ,) as the ratio
between the center frequency of the reference waveleg)(and the scale parameterg). We

follow this reasoning and introduce the ratio between waveigth (multiplicative inverse of
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the frequency) and width as a new parameter

Y= (2.3)

proportional to the number of wave periods within the Iter width. ~ is a scale invariant

wavelength parameter. Substituting the expression for from Equation (2.3) into Equation
(2.1), the Gabor function is reparametrized as

x2+y2

e 22

2 2

2 2

e‘;—(XCOS( yrysin() o H . (2.4)

g.- (xy)=

Figure 2.2 shows examples of Gabor functions of Equation (2#r a constant ~ value. In

(@ =5 (b =10 (c) =15

Figure 2.2: Examples of Gabor functions of Equation (2.4),9ing ~ = 1=3

that gure we note that xing ~ keeps the shape of Gabor functions constant, so that the
number of wave periods within the Iter width is 1.5 regardless of the Iter width. Thus, by
keeping the value of™ constant, the Iter appearance is maintained for di erent .

The Fourier analysis techniques denote Gabor functions asre-frequency atoms [73]
(time switches to space on images), due to the concentration dfeir energy in Heisenberg
boxes. A Heisenberg box (given by its center, time spread and fregpcy spread) provides the
resolution of a Gabor function in the time-frequency plane ahis de ned by the parameters
of the function. Figure 2.3 illustrates the Heisenberg boxes af1D Gabor function and its
scaled version. The center frequencies of those boxes are ealads presented in Equation
(2.2).

The Heisenberg box with parametersy and  of Figure 2.3 is analogously related to the
isotropic 2D Gabor function with parameters =2 = g and in Equation (2.1). A time-
frequency Gabor atom extract the energy of a well localizedapt of the spectrum that are
particular textured patterns parametrized by and . In addition, the texture orientation
Is provided by the angle .
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Figure 2.3: Example of the time-frequency localization oht Heisenberg boxes of 1-D Gabor
atoms. The reference Gabor function (bottom left) with its caespondent Heisenberg box
(top left) and the scaled Gabor (bottom right) with its respectve box. , is the frequency
width, is the time width, g is the center frequency of the reference wavelet, aisds the
scale factor.

2.2.2 Representing texture of object components

The convolution of the Gabor function with the imagel (x;y) allows us to extract the energy
of a well localized part of the spectrum. The Gabor response at jelst component location

(Xe: Ye) s 7 7
(9:; 1)(Xe; Ye) = L(Xy)9:; (Xc X;yc y)dxdy: (2.5)

The parameters , , and characterize the dominant texture of the object component.
One approach to select the texture that characterizes that géct component would be to
compute the response of several Gabor lters, tuned to di erent rientations, wavelengths,
and widths and retain the parameters corresponding to the marum response:

("0 =arg maxj(g;;  1)(xe;Yo)i: (2.6)

The set of parameters provided by the Equation (2.6) de ne a p#cular Gabor function
that captures the object component appearance as an oriedtéexture. However, if we
apply a geometric transformation to the component, we obtaia di erent set of parameters.
Thus, the obtained texture description is not invariant to theorientation and spatial support
(analysis window) of the object component. In the next sectiawe introduce a Gabor-based
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texture representation invariant to common 2D geometric trasformations.

2.3 Component invariant texture: the -signature

The parameters of the oriented texture selected by Equatior2(6) will change whenever the
Image is subjected to geometric transformations. In order to ¢din invariance to rotation
and size of the analysis window, we proceed as follows:

1. Integrate the response of the Gabor lters for all orientatins and spatial supports:
Z,27
Sw(Xe; Yoy )= . (9:; )(Xc;ye)d d; (2.7)
whereS,, stands for Gabor wavelength saliency function. At componentgint (X;Ye),
this is a function of the wavelength only and for each value of, S,, sums the contribu-
tion of all Gabor lIter responses, which were computed with thaparticular wavelength
. Thus, the S,, function can be viewed as the -signature of the component under
analysis. This function will give us the \energy" of the objectcomponent for any
wavelength of interest, independently of its orientation ad spatial support.

2. The -signature of an object component is independent of the origtion and extent
of the analysis window, but it is not scale invariant. If we compte the -signature
in a rescaled version of the image, the signature amplitude andchtion in  axis will
change. To overcome this problem we need to compute the imtsic scale of the object
component and use this parameter to normalize the-signature. Finally, we map -
signature to scale invariant values, using the scale invariant walength =~ as given in
Equation (2.3).

We could have selected a standard isotropic lter like the Laplaan of Gaussian (i.e. Mex-
ican Hat) to extract the texture characteristics. However, the @velength saliency function of
Equation 2.7 is built on very well localized time-frequencysabor atoms, so theS,, function
extracts a very well localized energy spectrum in the timedquency plane for all wavelength
values. In di erence, the energy spectrum of the Laplacian of &aissian has a large overlap
even at small wavelengths (high frequencies), thus extracgnsimilar information at that
range. To illustrate the di erence in overlap, Figure 2.4 showthe Fourier transform of two
LoG functions and two S,, functions.

In the next sections we will explain in detail the two steps brig described above.
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(a) Laplacian of Gaussian functions (b) Sy functions

Figure 2.4: Magnitude of the Fourier transform of two LoG funtons (left side) and two S,
functions (right side). The center frequency of both type ofuinctions is the same, so th&,,
functions have a better selectivity of the energy spectrum.

2.3.1 The \Gabor wavelength saliency" operator

To compute the -signature of an object component one could use the direct ingphentation
of Equation (2.7). However this would require a signi cant amont of computation. To
overcome this problem we de ne an equivalent kernel that krs the image just once for each
wavelength. The equivalent kernel is obtained by summing th&abor kernels for all spatial
supports and orientations and is denoted \Gabor wavelengthaBiency" kernel,
Z,Z7
W(Xe; Ye; ) = . 9;; (Xgy)dd: (2.8)

The closed form expression for the wavelength-space kernel ig tlollowing:

o I
:2 2r
w(r, )= . e + Jo 2_r : (2.9)

where,r = P W and Jo(z) is the Bessel function of the rst kind. Looking at Equa-
tion (2.9), the equivalent kernel is an exponentially decesing 2D Bessel function and it is
rotationally invariant because it is explicitly expressed in érms ofr.

The kernel computation from Equation 2.8 and Equation 2.9 asswe spatial support
values not present in discrete images (e.g. D,). Considering the resolution limits in discrete
images, the lower and upper limits of the spatial support () in Eg.(2.8) cannot cover the
whole interval [0 1 ). We use image resolution constraints to de ne the adequate integral
limits in Eg. 2.8. In the case of the lower Ilimit of the integral in Eq. (2.8), we consider
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that the Gabor wavelength should not be greater than the Gaussiaenvelope (6 ), so
5, otherwise no signi cant texture information is provided. Inthe case of the upper
limit of the integral, we rst nd an appropriate minimum ~ using the expression

Due to the discrete nature of images, the wavelength value isguided by the Nyquist sam-
pling ( = 2). To sample adequately a Gabor Iter with = 2, the Iter width must be
greater than 1 ( > 1). We choose = 2 and replacing both =2 and = 2 values yields

~ = 1. Having the minimum ~, the upper integral limitis = . Recomputing the Equation
(2.8) with the new integral limits, the equivalent kernel forthe wavelength signature is:
zZ Z
wa(xy; ) = g;; (xy)dd; (2.10)

=6

wherewy stands for the equivalent kernel for discrete images. The closé&m expression
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Figure 2.5: Example of -signature equivalent kernel. Top gures, 3D plot and 1D slicefo
wqy(X;y; 5). Bottom gures, 3D plot and 1D slice ofwy(x;y; 10)
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of Equation (2.10) is presented in appendix A.1 and Figure 2.5 alvs an example ofwg.
Therefore, the computation of the -signature of the object component located at point
(Xc; Ye) can be e ciently performed by:

Swe(Xei¥Ye; ) =1 Wq! (2.11)

We utilize Equation (2.11) to compute the signature of objectomponents in discrete
images. Even though the -signature is invariant to image rotations, image scale change
will cause the -signature to translate in the wavelength axis, and its amplitde will change
linearly with the scale factor. Now we tackle the problem of ensimg scale invariance for the

-signature in Equation (2.11).

2.4 Providing scale invariance for the -signature

We analyze rst the behavior of the -signature amplitude under scale changes. To obtain a
coe cient that performs scale-normalization of the amplitde of the -signature, we follow
Lindeberg's idea to provide a scale normalization for featas [66]. The rationale is to nd a
normalization factor speci c for each feature, proportionbto the width of the operator. The
second step to normalize the -signature consists in mapping values to the scale invariant
wavelength parameter™.

2.4.1 Amplitude normalization

In order to normalize signature amplitude, let us consider twamages: the initial image
| (x;y) and an homogeneously scaled version of the initial imade(x;y). The new image is
scaled by a factora: 15(x;y) = I (ax;ay). The -signature atls(Xc;Yc) is:

S\I/vs(xc;yc; ) = ksZW:W I's

w(x;y; Ms(Xe X;ye y)dxdy
Z7Z

w(x;y; )l (ax. ax;ay. ay)dxdy
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Now let x = ax, y = ay, and = a. Then dx = dx=a, and dy = dy=a By making
substitutions in the equivalent kernel of Equation (2.9),

Sk ) = (1 Sw)(@xcay: a)
= —Sy(axcay; a)
(2.12)
nally yielding:
1S\',VS(xc;yC; ) = ES\'N(axc;ayc; a): (2.13)

From Equation (2.13) we see that if we multiply the response of eéhkernel by the inverse of
the wavelength, the -signature amplitude becomes normalized with respect to scaleanges.
Thus, the amplitude normalized -signature at point (X¢; ), IS:

S (xeiye )= (I we): (2.14)

Equation (2.14) introduces the scaling factor 4 , which guarantees theoretically the same
amplitude of the -signature for two images with di erent scales. But in real imags, the
amplitudes will have very similar values and not the same valudue to the discretization
e ects of image subsampling on high frequencies. Figure 2.@gtrates the e ect of the scale
normalization of S,, amplitude by plotting both S,, and S;°™ at an eye's center point of
scaled images. We observe in Figure 2.6(b) a larger di erencetlween the response 0§,
in scaled images, while in Figure 2.6(c) the normalized response S;°™ is very similar
between scaled images. However, if we want to match the signatsinelotted in Figure 2.6,
it is necessary to warp one of the signatures before matching. ©wercome this problem
we need to compute the intrinsic scale of the interest point andse this parameter to map
-signature to scale invariant values.

2.4.2 Scale normalization

Finally, to obtain a scale invariant signature, we have to maphe -signature function using
the intrinsic scale (2, as the normalization parameter:

~= (2.15)
int

2The intrinsic scale computation will be explained in the next section
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(b) Sy at left eye point of images in (a) (c) S;°™ at left eye point of images in (a)
Figure 2.6: Example ofS,, and S)°"™ for an eye's center point

In Equation (2.3) we presented™ as the scale invariant wavelength parameter of the Gabor
function. We apply the same de nition, but replacing the Iter width  with the intrinsic
scale jnt in order to map values to the scale invariant™ values.

To determine the signature for a given interest point, we shouldonsider a range of
wavelength values, =f 1;:::; k;:::; k@. This set can now be normalized with respect

Finally, the ~-signature (top-down saliency model) of the component locateat point (Xc; Yc),
encompassing this set of wavelength values, is denoted& and de ned according to:

“Sxey. (k) = S (Xei Yer k= int); k2 (2.16)

To illustrate the scale normalization procedure presented irnts section, we show in Figure



2.5. INTRINSIC SCALE FROM THE -SIGNATURE 27

2.7: (i) the  signature, (ii) the amplitude-normalized  signature, and (iii) the fully scale-

normalized signature. The small di erence of the signatures in Figure 2.@] is caused by
the discretization e ects of the scaling procedure. There is @maining issue to consider in
order to match the signatures of components: the intrinsic scamputation. This is the

topic of the following section.

2.5 Intrinsic scale from the -signature

The work described in [66, 65] proposed an automatic selectioh scale for several image
features: blobs, junctions, edges, and ridges. The procedure @slbok for local extrema
in scale-space, using scale-normalized operators to nd feadst intrinsic scale, without any

prior knowledge of feature size. The intrinsic scale is charaetstic of a given texture and

changes (proportionally) when the image scale is modied. As ah, it allows us to track

scaling modi cations of a textured pattern through adequatenormalization. We could use any
of the operators proposed in [66, 65], but we noticed experintally that the zero crossings
of the -signature function closest to the global maxima are very stablender image scale
changes and are directly proportional to the scale factor. s, we compute the intrinsic
scale jnt at object component point Kc;Yc) as:

ne=agming i o=t iSPT(xaye )=0g " =argmaxjspP™j  (2.17)
0

Figure 2.8 illustrates the similarity between the -signature kernelw and the Laplacian
of Gaussian (LoG) kernel de ned by Equation (2.18). Notice thaapart from the magnitude
and sign inversion, the two functions are very similar, but the -signature kernel is sharper at
the origin. The extrema points of the LoG response provide th@d¢ation of blobs in images.
With the addition of a scale-normalization factor ( 2 in Equation 2.19), the extrema points
of the LoG response compute the intrinsic scale of blob-like imagtructures (Equation 2.19).

1 a2y

Culxy; ) = 5—& 77,
2+ y2 X2+ y2
LoGw(X;y; ) = r %Gy = %G%W + @@Ggl"" = % 1 X2 2y e 2% (2.18)
LoG™™(x;y; ) = 21 LoGu(X)y; );
f = argmaxjLoGnom : (2.19)
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Figure 2.7: Example of scale invariant signature;S.
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Figure 2.8: In left side we plot the 1D cutLoG(0;y;6), in the right side we plot the 1D cut
Sw(0;y;18)

2.5.1 Evaluation in synthetic images

We proceed now with a comparison between the proposed and claagsforms of intrinsic
scale computation, respective\5>™ and LoGnom . We compute the intrinsic scale in the
center of a circle image and in the center of a ridge image, whiwe show in Figure 2.9. The
intrinsic scale is computed by using th&{>™ zero crossing in Equation (2.17) and the global
maximum of jLoGnom ] In Equation (2.19). Each image is subjected to a scale changeeaof
factor of 2. A correct intrinsic scale computation method shodlbe able to obtain the scale
factor between images, by computing the ratio between intrsic scales.

@r=6 () r =12 (c) width=8  (d) width= 16

Figure 2.9: Circle and ridge synthetic images. Parameter vadg are in pixels.

In order to illustrate the intrinsic scale computation, we preset in Figures 2.10 and 2.11
the S;°"™ and LoG,om curves at the center point of the synthetic images, and the respteve
intrinsic scale values in Table 2.1. As expected,0G,,m COmMputes a correct intrinsic scale
ratio in circle images because this operator was conceiveddetect blobs. Even though the
Si>™ scale ratio is not exact, it is a very good approximation to theorrect scale ratio. In
the case of ridge images, we see in Table 2.2 thgf°™ intrinsic scale ratio is closer to the
real scale factor, whileLoG,,m Scale ratio is farther from the real scale factor. The reason
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Intrinsic scale S{>™ Intrinsic scale LoGnorm

circle r =6 pixels 9.15 4
circle r =12 pixels 18.01 8
intrinsic scale ratio 1.97 2

Table 2.1: Intrinsic scale at center point of circle images inigure 2.9
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Figure 2.10: LoGpom (left side) and S;°™ (right side) for the circle images in Figure 2.9.

for this is that LoG,o,m has a good behavior only with blobs. On the other handy;°™
computes adequate intrinsic scales for both circles and ridge

Intrinsic scale S;°"™  Intrinsic scale LOGnorm

ridge width= 8 pixels 8.42 4 21=4
ridge width= 16 pixels 15.67 8
intrinsic scale ratio 1.86 1.68

Table 2.2: Intrinsic scale at center point of ridge images in gure 2.9

To summarize, we have presented a synthetic image test to see expentally the advan-
tages of the intrinsic scale computation by searching for the mecross closest to the global
maximum of jSi°™ j, presented in Equation (2.17). We propose a method that proves a
good approximation to the correct scale factor between imagjewith higher versatility than
LoGnorm - Using the intrinsic scale jt of Equation (2.17), we can now map the values to
~ values, using the Equation (2.15). A more thorough analysis dfi¢ proposed intrinsic scale
computation method is provided in Section 2.7 and includehé use of real images.
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Figure 2.11: LoGpom (left side) and S;°™ (right side) for the ridge images in Figure 2.9.

2.6 Top-down saliency model with the -signature

So far we have proposed a rotation and scale invariant signatucemputed at object com-
ponent point (Xc;Yc). In order to estimate the top-down saliency model, we can use angle
example of the scale invariant signaturé'S, or if training examples are available, a statistical
description of the data set can be computed (i.e. the mean). Thep-down saliency model
of componentc is:

8

< ~ — — —_ .
S y "k 2 7, mean signature
SM(ry= o Wik T mean signalure (2.20)
© 7S(Tk); k2 T~ single sample signature,

where ~S, denotes the mean value of S yc at locations of the object componentc in

nent model SM,, we can analyze novel images and select only those interest p®iwith
~-signatures conforming to the model. The rejection of bad cdidates is performed by
matching the ~-signature of the interest point™S,_.,. with the saliency modelSM., comput-
ing the euclidean distance between signatures. We rejets,, . if the euclidean distance is
greater than the threshold learnt in the training set.

The top-down saliency modelSM, de ned in Equation (2.20) computes a wavelength
pro le that captures the texture information of object componentc. The steps to obtain the
invariant wavelength pro le are as follows:

Computation of the amplitude normalized signature S{;°™ .
Computation of the object component intrinsic scale, it -

Computation of ~S;..,. by mapping to ~ values.
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The model can now be used to Iter out interest points very unlikly to be object com-
ponent c in novel images. To assess the properties of the saliency mo8&l., we present
some tests in the context of facial feature detection.

2.7 Tests

In the rst test we assess the properties of the intrinsic scale comfation using the -
signature. In a second group of tests we perform interest point setion applied to face
components using the scale normalizedsignature.

2.7.1 Variance of intrinsic scale

We present results that illustrate the low variance of the intmsic scale computation using
the -signature, when compared ta.0G,om . The test comprises intrinsic scale computation
of facial landmarks in AR face database [77], using ground trughoints provided by [16]. We
select 82 subjects without glasses and compute mean and variatehe intrinsic scale at
several facial landmarks. In Figure 2.12 we observe the faciahtimarks selected to compute
intrinsic scale.

Figure 2.12: Facial landmarks

Table 2.3 shows the results of mean and variance of the intrinsgcale for theS)°>™,
LoG,om and the eyes ground truth. Considering only the eyes, we rematke very similar
values of the variances between the ground truth and the intrsic scale fromS;°"™ . The
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4
Sl LoGhorm —%m- Ground truth

S‘;‘IIOI'm

Facial Point 2 2 2

Left Eye center 6.1 04 44 15 3.75 3.81 0.33
Right Eye center 59 04 44 1.8 4.5 415 0.47
Left Eye corner 5 07 35 38 5.43 - -
Right Eye corner 4.4 0.8 6.7 5.8 7.25 - -

Nose 48 03 38 03 1 - -
Left Nostril 4.9 1 49 76 7.6 - -
Right Nostril 5 02 41 7 35 - -

Left Mouth corner 7.7 35.3 5.8 18.1 0.51 - -
Right Mouth corner 6.1 36 5.3 11.8 0.33 - -

Table 2.3: Mean , variance 2 of intrinsic scale, and variance ratio between intrinsic scales.
The last two columns shows the Mean, variance 2 of the ground truth obtained from the
pupils radii, computed from user-clicked points. For the restfdacial landmarks but the eyes,
is very di cult to de ne the spatial extent to have an adequate ground truth measurement.

S intrinsic scale variance is in general lower thahoG,,m intrinsic scale variance for
the eyes and nose facial landmarks, while in the case of mouth damarks LoG,m intrinsic
scale has a lower variance. Nevertheless, in the case of mouth laadks, the variance of the
intrinsic scale is very large in both cases because mouth landrkaihave a greater variability
(e.g. thin and thick lips, beard presence/absence), which quésts the use of such landmarks
for facial analysis.

In order to measure quantitatively the variance relation beveenS)°>™ intrinsic scale and
LoGnom intrinsic scale, we compute the variance ratio

2
LoG norm .

norm
Sy

In most of the cases the ratio is greater than 1, meaning that thatrinsic scale from S;°™
has smaller variance than the intrinsic scale frohoG,om . We must remark that the intrinsic
scale fromS;°>"™ has smaller variance even in the case of blob-like facial landrks like eyes
and nostrils. The reason for this behavior is that in the real imges the eyes have two blobs:
one caused by the re ection of light on the pupil and the pupil b itself. The intrinsic scale
from S°>™ is less sensitive to the presence of two blobs in the eye's intergsiint. In the
case of nostrils, their shape is elliptical instead of circular @nthe variation of nostril size
across subjects lead to intrinsic scale errors. Thus, in real imagthe intrinsic scale from
Si>™ outperforms the intrinsic scale fromLoGnorm . Additionally, in the speci ¢ application

of intrinsic scale to normalize the -signature, low variance values help to compute a model
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with higher precision.

2.7.2 Interest point selection of facial components

The goal of the tests in this section is to assess experimentallyetimost important properties
of the top-down saliency model of Equation (2.20): (i) remoVaf points very di erent from
the model, having very few rejections of model points, and )iiscale invariance of the™-
signature. The data uses 82 subjects from the AR face database[#Zvhhere half of them are
used for learning the saliency model and the remaining half ised for testing our methods.
The saliency model is learnt in a supervised manner, using groutrdth component points
in order to compute the modelSM..

We select candidates for facial components from a set of intetepoints. Four facial
components are modeled by the top-down saliency mod&M. of Equation (2.20): eye, nose,
nostril, and mouth corner. To estimate the saliency mode€bM., we use ground truth points
of the face components in the training set. The test stage is camcted as follows:

1. Wedene asetofscales;=1; ,=2; 3=4; ,=8; 5=16

2. For a given scale i, the set of interest pointsIP; is provided by local maxima of the
amplitude of the Laplacian of Gaussian response applied af,

IPi=argrpa>)<jl LoGw(x:y;: )i (2.21)
Xy

whereLoG,, is the Laplacian of Gaussian kernel presented in Equation (2)18

3. The entire set of bottom-up interest points results from the mion of the points detected
at all scales:
P = 1IP (2.22)

4. Every point in the setlIP is matched against the facial component saliency modgMe..
The matching procedure rejects interest point locations wht low similarity.

To evaluate the performance of the method, we compute the @dtrate of facial component

detection,
# correct matches

# positive examples

recall = (2.23)

We consider a match as correct if at least one of the interest ptsnselected by the saliency
model SM. is located in the proximity of the ground truth facial comporent location. Prox-

imity is de ned as a circular region around the component'snterest point of radius 5 pixels,
SO points inside the circle are marked as correct matches.
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In order to evaluate the impact in computational complexityreduction, we compute the
removal rate of interest points not conforming with the model

# points selected by SM_

P (2.24)

removal = 1

Facial Component Recall removal (%)

Eye 100 79.64

Nose 100 80.03
Nostril 100 77.94
Mouth corner 90.2 89.9

Table 2.4: Results of top-down guiding search of facial landmia

Table 2.4 shows that excluding the mouth corner point, we obia perfect matching
performance, while removing interest points that are very dérent from the facial component
we are looking for. In average we remove 79.21% of the initiahplacian of Gaussian salient
points. The few missing points by the model are the corner mouthmterest points. The
reason of this behaviour is the high visual variability of corar mouth components, leading
to a very unstable saliency model. As shown in Section 2.7.1, theoath corner point is an
unstable landmark and should not be used as an object component.

These tests show experimentally how the proposed method succeadselecting object
components in a top-down manner. In the following set of tests,excheck the scale invariance
of the saliency model.

Scale invariance of saliency model

Using the saliency model learnt in the previous section, we now algize the performance of
the method in selecting candidates for facial components inaded versions of the images.
We compute the mean recall rate for three facial componentsyes nose, and nostril. In

Table 2.5 we observe that the saliency model learnt at a xed s@als highly tolerant to scale

changes up to 0:5 octaves. The method is not fully invariant because of the vergmall size

of the nostrils in the lowest resolution images. However, the ressilin Table 2.5 shows the

suitability of the intrinsic scale method to provide scale invaance to the -signature.
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scale change(octaves) Performance(%)

-0.5 93.49
-0.25 100
0 100
0.25 100
0.5 100

Table 2.5: Results of scale invariance test of the saliency model

2.8 Discussion

In this chapter we have exploited Gabor Iter parameters to epresent texture. We charac-
terize an object component by its dominant texture, encodeth a new top-down saliency
operator, the  signature. We showed suitability of the signature for modelinglgect com-
ponents, specically in: (i) building a coarse appearance modef components, and (ii)
computing the intrinsic scale of the components.

The signature is utilized for selecting interest points confaming to a particular object
component and relies on a scale and rotation invariant wavelgth signature. The rationale
behind the signature is to gather texture information in the bject components, in order to
build a coarse appearance model suitable for interest point seien. The proposed appear-
ance based saliency function is characterized by the followiproperties:

Successfully removes points that are very di erent from the gbct component.
Has very few rejections of true positives.
Invariance to position, orientation and scale of the object ecoponent being searched.

These properties are adequate to include the saliency modebposed during the early
stages of the object recognition process in order to reduce tmember of interest point
candidates for every component, decreasing signi cantly theumber of computations during
object matching process.

As a second application of the wavelength saliency operator, wescribe a method to
compute the intrinsic scale of an interest point. The method pqmosed is able to compute a
very good approximation of the scaling factor between scaleshage regions, having a similar
behavior to the scale-normalized Laplacian of Gaussian (LoGJhe intrinsic scale j; from
the -signature is characterized by the following properties:

Higher versatility than the intrinsic scale 37 from jLoGnom j, Supported by the correct

behavior of ¢ in both blob and ridge features.
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Smaller variance than [ in the case of facial components of similar size.

In summary, we have shown how to apply the properties of Gabortdrs in the rst step
of the component-based object recognition: interest point s&tion. In the next chapters, we
will explore Gabor Iter properties in the second step of objeaecognition: local descriptor
computation.
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Chapter 3
Filter-based descriptors

So far we have explored the use of the wavelength (inverse ofgiuency) parameter of the
Gabor function to select interest points in a top-down mannerpreselecting candidates for
object components from a set of interest points. In this chaptewe show how to represent
object components in a much richer way, in order to perform agponent matching in a robust
manner under common image luminance and geometric defornuets. Object components
will be represented by local descriptors. The local descriptopoposed in the literature can
be divided in two main classes: Iter-based and histogram-basediltér-based descriptors rely
on collecting and processing the response of linear Iters in theterest point neighborhood,
like Gaussian derivatives [58], Gabor lters [38, 21], and stesble Iters [36]. Histogram-
based descriptors [4, 70, 3] instead compute the statistical digtution of the image gradient
in image patches around the interest point.

In this chapter we focus on Iter-based descriptors, while hisgram-based descriptors will
be addressed in Chapter 4. The motivation behind the usage of dt-based descriptors is
two-fold:

Biological ndings of neuron responses in low-level visual dex areas [46, 20] show that
the neurons' response pattern can be characterized as Iter rempses (i.e. receptive
eld responses).

Linear lIters have been studied extensively in signal processirdpmain, and formal
methods are available to tune their parameters in order to @éure particular properties
of the image region under analysis.

From this class of descriptors, the ones used in [68, 109] in the HMAaXchitecture have
shown very good results in recognition performance. They arased on a very dense sampling
of the Iter-bank parameters (orientations and scales). Futtermore, they collect the lter-
bank responses at all points in the image patch of interest. Usuglthese descriptors have a

39
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very high dimension, requiring large storage capabilities drlong computation times in the
matching procedure. We denote this class of representation dsnse descriptors

Despite the descriptors of the HMAX architecture being state-afe-art, their computa-
tion time is too long for the real-time demands of some applitians. In this chapter we will
look at faster alternatives, tolerating a possible decrease inng@mance, but allowing deci-
sions to be taken in short time, depending on the application gairements. Several works
have adopted such a parsimonious representation paradigm toiloulocal image descriptors
[113, 107, 47, 70] and they have shown good recognition rateseveral applications. These
descriptors have a smaller dimension because they store the resgonf the Iter-bank only
at the interest point and have a sparser sampling of the parametepace. Given their smaller
dimension, the matching process is very fast. This class of repeatation we denote asparse
descriptors

In this chapter we adopt a sparse descriptor approach to objeabmponent representation.
Contrary to previous approaches, where the lter-bank paramters are xed regardless of the
object component to be described, we propose an adaptive cortgiion of the Iter-bank
parameters depending on the particular image informatioriVe use the Gabor Iter response
to select the most adequate parameters for every object commgon. The selected parameters
are then used to compute the feature vector. For the same vectdimension, an adaptive lter
descriptor with appropriately selected parameters will, in gneral, overcome xed parameter
descriptors in recognition performance. It will eventuallyapproach the performance of dense
representations, but with lower computational cost.

In the previous chapter we have shown that wavelength is an imptant Gabor parameter
for object component preselection. Likewise, we include allaBor Iter parameters (scale,
orientation, and wavelength) in the adaptive descriptor. Taperform the selection, we look
for local extrema in the parameter space, of the response of Gallters at the interest point
location [88].

Usually, approaches that use Gabor Iters as local descriptorg@anot fully invariant to
image transformations. To evaluate the robustness of the desdaopwe analyze how it changes
under image rotations and scalings. Then, we introduce methstb achieve rotation and scale
invariance of the adaptive Gabor bank for object component adeling [89]. In summary, we
introduce a method that explores the richness of Gabor Iter @grameters by selecting the
Iter parameters that best represent each object component, lle being invariant to rigid
transformations.
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3.1 Related work

Here we review the most important lter-based descriptors that hve been applied to rep-
resent image patches. One of the most paradigmatic works on hdased descriptors [58]
uses Gaussian derivative lters. Gaussian derivatives of order capture the local structure
around an image pixel and can be viewed as the order coe cients of the Taylor series
expansion of the image at that pixel. The parameters of Gaussialerivative Iters are the
derivative order and scale. In order to build Gaussian derivate Iter-bank descriptors, com-
mon approaches compute responses for selected derivative s@nd scales. Then, responses
are stacked in a feature vector (i.e. local descriptor). Huttdacher and Felzenszwalb [47]
represent the appearance of object components by convolvitite object part with a set
of Gaussian derivatives. Schiele and Crowley [106] compute loigtams of scale-normalized
Gaussian derivative responses of object components. In the caseabr images, Geusebroek
et.al. [40] introduced a Gaussian color model, utilized by Hadit.al. [42] to compute Gaussian
derivatives of color receptive elds. Hall et. al. used the cotdi erential structure provided
by Gaussian derivatives to compute local descriptors in colamages. Local descriptors based
on Gaussian derivatives are able to represent object compongnbut in their standard form,
they are not invariant to common image transformations like gtations and scalings.

Koenderink and Van Doorn introduced the di erential invariants [57], combinations of
Gaussian derivatives of di erent orders invariant to 2-dimenional rigid transformations.
Schmid and Mohr [107] use these di erential invariant responsés compute local descriptors
(i.e. \local jets").

Freeman and Adelson proposed another approach to achieve ota&ion invariance, con-
sisting of the use of steerable lters [36] to form a set of \basis fations.” This procedure
allows to \steer" a lter to any orientation. Rao and Ballard [102] apply a bank of steerable
Iters using Gaussian derivatives as \basis functions" in orderd build descriptors of object
components.

Gabor Iters have a richer set of parameters than Gaussian deatives and have been used
in some works as local descriptors [60, 122, 113]. Lades et[@0] and Wiskott et.al [122] use
Gabor lter response to describe regions around nodes of a gragiomputing a \Gabor jet"
(i.e. lter bank). Smeraldi and Bigun [113] design a bank of Gaor lters, whose energy is
spread in the frequency domain in a log-polar con guration. fie design criterion guarantees
that relevant frequencies are captured by the lter bank. Tlen, the Iter bank is utilized to
represent facial landmarks.

The biologically inspired HMAX features [103] also use Gabor ltebank responses to
compute local descriptors, but belong to the type of dense regentations. The initial step
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is the computation of Gabor Iter responses using a xed set of sead and orientations,

whose parameters are tuned similarly to V1 simple cells in the vigucortex of monkeys [20].

Then, local maxima over position and scale of the Gabor responggsnerate the so called
C1 features, a dense and redundant representation of the localage appearance. The C1
representation has recently been used in object detection ituttered images [109].

Our proposal belongs to the sparse type of Gabor Iter-based regsentations. One of
the most recent works in object recognition using Gabor Iter$59] proposed a sparse Gabor
feature representation, being invariant to scale, rotationtranslation, and illumination image
transformations. This work introduces a feature matrix, wheg the (i;j ) component is the
Gabor Iter response at xed scale ; and orientation ;. The rationale behind the matrix
is to cope with image rotations and scalings. If the matrix is eoputed from objects in
a standard pose, it is possible to introduce column-wise or/and wewise shifts to match
the object. In order to handle linear illumination changes, e matrix is normalized by the
summation of all its components. An application of this idea is ngsented in [43], in a face
detection task using high resolution images.

In this thesis we go a step further by exploring all Gabor funatin parameters to represent
an object component. The adaptation of feature parameter®tparticular object parts was
rst exploited in [53]. They propose to select the Gabor functio scale and orientation
in a semi-automatic fashion, using the \Information Diagram” oncept. The Information
Diagram represents the Gabor Iter response at an image pointsaa function of the Iter
orientation and scale. We extend the Information Diagram casept to consider all Gabor Iter
parameters (scale, orientation, and wavelength), thus reging in a 3-dimensional function.

3.2 Dense vs. sparse Gabor lter-based descriptors

In this section we concentrate on descriptor models using Gabdiers. We will start with
a brief description the HMAX model [109]. Given its reported sta-of-the-art performance,
in Chapter 5 this model will be considered as a benchmark forrmoparison purposes.

3.2.1 The HMAX descriptor

The biologically inspired HMAX model was rstly proposed by Rieselnuber and Poggio
[103] and recently revised by Serre et al. [109]. The HMAX arclitture considers all phases
of an object recognition architecture, including feature draction, local image description,
descriptor matching and object model learning and classi catn. We start by describing the
way to represent an object component. Later, in Chapter 5, weilvfocus on object model
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learning and classi cation.
In Figure 3.1 we can see a graphical description of the HMAX feateirextraction steps

(from [109]). The feature extraction, descriptor de nition and matching steps are described
in the following algorithm:

1. S1 maps: First, images are analyzed with a Gabor Iter bank. fAe parameters of
the Iter bank are tuned for several scales () and orientations ( ), similarly to V1
simple cells in the visual cortex of monkeys [20]. The maps cted are denoted by
S1(x;y; ; ), with x;y the image spatial coordinates.

2. C1 maps: Pairs of scale adjacent S1 maps are subsampled and d¢oetbinto bands
by computing the local maximum across scale. Thus, a pixel of tHél map has the
strongest response between pixels at the same location in two adhat scales. This
process is done for each orientation and pair of adjacent sladependently. These
maps are represented bZ1(x;y;b; ), wherebis the band index. Figure 3.2 shows the
C1 maps of all orientations in the rst band.

The two steps just explained (S1 and C1 maps) compute, for eachxei (x;;y;) in the
object component, a vector containing the local maximum indjacent scales of the Gabor
Iters responses for the di erent orientations. Therefore, tiey provide a dense Gabor lter-
based representation as the component model that we refer to @f; ). In order to match
the descriptor in new images, we do as follows:

1. Compute the C1 map of the new imagex (x;y;b; ).

2. S2 maps: Compute the exponential mapping of the Euclideansthnce between the
descriptor centered at all image pointX (x;y; b; ) and u(b; ).

S2(x;y;b; ) =exp( kX(x;y;b; ) u(b; )k?); (3.1)

where is a tunable parameter.

3. C2 features: compute the maximum over all positions, bands @mrientations at the
S2 map, obtaining a single value C2 for the object component

C2= metl)x S2(x;y;b; ) (3.2)
X3yi0;

Thus, a C2 value describes the strength of the most similar point iopne image with
respect to the descriptoru of a particular object component. This value can be used to tna
a binary classi er with positive and negative examples of the coponent.
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Figure 3.1. Overview of HMAX feature extraction, extracted fom [110]
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Figure 3.2: Sample C1-HMAX representation. (a) Original image(b) C1-HMAX represen-
tation from the rst band (4 orientations).

In general the HMAX descriptor and matching procedures are comgationally heavy. In
the next section we address more compact approaches to builddbdescriptors using Gabor
Iter responses.

3.2.2 Sparse Gabor Iter-based component models

Sparse representations compute a feature vector that collscthe Gabor Iter responses at
the interest point of the object component, using a Iter bank vith parameters

vector is to stack the amplitude of the responses at poin(y) as follows:

WY = uleay) ey ey (3.3)

with
umOGY) = (G mifm: DY) (3.4)

where (m;fm; m) are the Gabor parameters used to compute the response @t, for a
Iter bank of size M. As an alternative the feature vector can contain both the rdaand the
imaginary part of the Gabor responses:

ux;y) = ul(x;y); U™ (X Y); ;uM(x;y) ' ; (3.5)

with

U (Y) =Re(( nim: m DOGY): U™ TOGY) = IM(G it mt DY)

The rationale is to model object components by analyzing tlrecontents in terms of edges
and textures of di erent scales, orientations, and frequenae Huttenlocher and Felzenszwalb
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[47] showed experimentally the adequacy of the Gaussian modgtte Iter bank in the case
of Gaussian derivatives. We adopt this Gaussian assumption, moahgjithe local descriptor
as a random feature vector that follows a normal distributiorwith mean . and covariance
matrix ¢, u(x;y) N ( u.; ¢)- Indierence to the Gaussian derivatives, the response of a
Gabor lter is a complex number and its response can be considdras a 2D random vector
that follows a normal distribution with a two dimensional covaiance matrix , which is
included in the high dimensional matrix .. The Gaussian assumption allow us to evaluate
in a straightforward classi cation test the ability of the descrptor to discriminate correctly
object components.

In order to match the object component model in new images, weillwcompute the
distance between the model learnt and the novel patterns. We rsider both the Euclidean
and Mahalanobis distances,

Euclidean d? (uxy)  w) Usy) )

(uy)  w)' otuly) e (3.6)

Mahalanobis d?

The decision of whether a object component is present or not incertain image pixel will
depend on the distance values computed.

3.3 Adaptive lter-based descriptors

The dense and sparse models introduced in the previous sectionddi erent characteristics.
Regarding the computational complexity of the matching proedure, the dense models need
very large times for matching. To illustrate this fact, let usconsider an object component with
sizeM N and descriptor sizeS. The matching complexity of the dense descriptor HMAX
(with the addition of bands B and orientationsT) isO(M N B T S). On the other
hand, the matching complexity of the sparse models dependsdarly on the feature vector
size,O(S), and those models have shown good recognition rates in sevexpplications [113,
122, 5, 47]. Thus, we consider sparse component models with higtieacy characteristics in
the remaining of this chapter. The sparse model of each compaheresented in this section
consists of a vector of Gabor Iter responses. However, instead of nigiprede ned values
for the Gabor Iter parameters we propose methods for the sekdan of these parameters,
exploiting the speci ¢ properties of each object componentThese descriptors areadaptive
to the local image information, which will lead to better peformance than xed parameter
descriptors.
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3.3.1 Parameter selection

that best models an object component. We recall the 2D zero nresotropic Gabor function,

written as:

X2+ y2

oy & 27 j2f (xcos( )+ysin( )) 22§22
g (Xy)= > 2 e € ; (3.7)

where the parameterd, , and are the frequency, orientation, and width of the Gabor
function. A straightforward approach to de ne the Iter bank parameters would be to sample
the parameter space uniformly in some limited range. Howeverhis may not be the best
strategy to exploit the particular characteristics of the obg@ct component under test since the
choice of the parameters would not be driven by the object sgecappearance. Alternatively,
we can analyze the Gabor response function in the full parametspace ( , f, and ) and
select those parameters that best describe the particular obfjemomponent characteristics,

(Peife o) = arg max (g (6y) 1)(Xeyeli (3.8)

with Z 7
(9, D(XeYe) = L(XY)g5 (Xe X;Ye y)dxdy;

where (c;Y.) denotes location of object component in image |. However, the sampling
strategy of Equation (3.8) would select a single Gabor functiotinat is insu cient to discrim-
inate the modeled object component from others. Even if we seléhe rst M local maxima
of the Gabor Iter response magnitude, this strategy could biaghe parameter distribution
to a too narrow range and reduce the discrimination capabilitof the Iter bank. In order
to maintain a uniform parameter range and still be able to adapthe representation to the
particular object component under test, we will sample one ohe parameters uniformly and
perform a 2D search of local extrema in the remaining dimensign We explore the three
di erent options, sampling uniformly , f, and

We have several ways of coding the object component appearanas we can choose:

1. Which parameter we sample uniformly (f; ),

2. The type of local extrema used to select the remaining paraiees (e.g. only minima,
only maxima, and minima and maxima),

3. The metric to match object component model (e.g. Euclideadistance, Mahalanobis
distance), and

4. The response type (e.g. modulus, real + imaginary parts).
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In order to choose the most adequate option for every item, weauate the performance of
the di erent alternatives in a facial component detection gperiment. Then, we check the
robustness of the chosen local descriptor to image rotations amsdalings.

Extended information diagram

The \Information Diagram" (ID) concept proposed in [53] selets the Gabor Iter parameters
semi-automatically. The ID represents the magnitude of the Geor response at a certain
interest point of an object component Xc;Y.), as a function of and , keeping the value of
1=f constant. The ID function is de ned as:

IDe(; )= 10(9; 121, D(Xes Yo

Then, the parameters (; ) corresponding to local maxima of ID are chosen as \good
Gabor function parameters because they represent the objeabneponent's characteristic
orientations and widths. We extend the ID concept to considerariability also in the 1=f
value, by samplingf values independently of values. Considering the parameters;f; ),
the Extended Information Diagram is given by:

EID(:f; )= i(0r DX Yoi: (3.9)

EID. is the parameter space function of Gabor Iter responses at thaterest point of the
object componentc. We analyze the EID function to select the adequate lIter parmeters.

Parameter selection in the Extended Information Diagram

Considering the three dimensional parameter set, the strategy tnd the adequate parame-
ters consists of \slicing" the parameter space and then searchifigy local extrema in the 2D
slices. We observe in Figure 3.3 the di erent forms of slicing thEID function (Equation
3.9): slices, slices, andf slices. The strategy to nd good parameters for each target is
based on uniform discretization of one of the parameters (say of Equation (3.9) and search
for local maxima in the resulting set of EID slices. We denote theisés: -ID, -ID, and

f -ID respectively, keeping constant one of the parameters= o, = oorf = fg:
DS ) = EID( oif; ) (3.10)
-IDL(;f) = EID(:f; o)

f-ID°(; ) = EID(;fo; )
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Figure 3.3 shows some examples of thelD, -ID and f-ID computed at an eye's center
point.

£ N

Figure 3.3: Examples of -ID, -ID, f-ID, and slices in the parameter space (from left to
right).

Continuing the example, let us dene aseff = f 4; ;,; ; Lg, containing uni-
formly sampled values of within [0; ). Thus, the set of -IDs for object componentc is
given by:

D ! =f -D}; ; -IDJ; ; -IDJg (3.11)

To select Gabor parameters, we assume that, in every slice, an attjeomponent has two
representative textures that can be extracted with local exema points of the slice. The
initial hypothesis is to relate local maxima to signi cant texXures in the component and
local minima to textures with low weight. We do not knowa priori which is the best way
of combining the extrema points, so we consider some combinatonf local minima and
maxima, provided by the two highest local maxima

()
Imzax’ f’\ImaX)

arg max -IDS51=1; ;L

arg max -IDS =1, L (3.12)
f; 67 uf6fig
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and the two smallest local minima:

AT = argmin -IDI=1;0 L
amn.fmny = arg min D/ =1; ;L (3.13)
’ ’ fi 8n1f6fig

The parameter selection of Equations (3.12)-(3.13) compwé¢he \good" Iter parameters in
the case of -ID. We can use the same strategy to select the parameters frordD and f -ID,
computing combinations of local maxima and minima. The apppriate sampling approach
(ID slicing) and the local extrema combination will be chosenni an experimental basis,
performing a facial component detection using eyes, nose, anduth.

Now we have all the elements to build the component model of emftons (3.3) and
(3.5). In order to estimate the model, we carry on the followig steps: (i) compute a mean
component imagel ¢, then (ii) compute the Gabor Iter parameters from EID, slices using
I ., and (iii) compute the mean and covariance of the Gabor Iltebank response by applying
the Iter bank selected from EID, in the training set of component images.

3.3.2 Parameter selection tests

We perform facial component detection in order to select thebgect component model struc-
ture that achieves the best performance. Then, we evaluatedhnvariance properties of the
model chosen, by detecting facial components in rotated andased images. Experiments
are set-up for evaluating the discretized parameters (f, or ), the number and type of the
extrema computed at each ID, the distance metrics (Euclideaand Mahalanobis), and the
Iter response type (magnitudevs real-imaginary parts). We present in the Table 3.2 the list
of the degrees of freedom combined.
For each test shown in Table 3.2, we use 82 subjects from the AR facgabase [77], all
without glasses, where half of them are used for training (compaibbject component model
¢, ¢) and the remaining half for testing (object component dete@in). We represent four
di erent facial components: left eye, right eye, nose, and mttu We uselL = 12 slices of
EID and at each x-ID slice we choose either one local maximum ande local minimum or
two local maxima, so the number of lters is kept constantl = 2L = 24 in Equations (3.3)
and (3.5)). The number of samples of the training data set is ndarge enough for estimating
the full covariance matrix of the descriptor that contains tle real and imaginary parts of
the Gabor response. Thus, we approximate the covariance matfizy computing a diagonal
matrix and consequently lose the covariance information beaen the real and imaginary
parts of the response. The sets of values for thelD, f-ID, and -ID are, respectively,
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T =10 =12 ;11=129, F = f0:50:4589 ,;0:0063), and S = f4;7; ;39. All x-
IDs are calculated from the mean imagéds in the training set at each object component (left
eye, right eye, nose, mouth). In order to see the advantage owlie common xed Gabor
Iter approach, we compare against the biologically plausilel xed parameters presented in
[61], using 4 orientations and 6 combinations scale-wavelém@s shown in Table 3.1.

(rows), (columns) | 1.7|3.7|7.4| 14.8
0.95 X
2.12 X
4.35
8.75
17.5
35.04 X

x| X| X

Table 3.1: and pairs used in the test with xed parameters. The orientation vales used
are =10, =4, =2,3=4g

Test ID type # local max # local min distance mag re+im
1 1 1 Mah 68.49 78.33
2 2 0 Mah 85.92 95.83
3 f 2 0 Mah 58.19 74.16
4 f 1 1 Mah 54.41 75.83
5 2 0 Mah 58.19 72.50
6 1 1 Mah 50.21 72.50
7 1 1 Euc 31.93 85
8 2 0 Euc 38.87 875
9 f 2 0 Euc 17.86 53.33
10 f 1 1 Euc 15.55 45
11 2 0 Euc 24.79 74.17
12 1 1 Euc 15.97 75.83

13  xed (Table 3.1)
14  xed (Table 3.1)

Mah 75.40 78.30
Euc 68.51 71.33

Table 3.2: List of the performed tests to select the best target ndel. Recall rate in last two
columns(%)

To evaluate the performance of each experiment we computeethrecall rate of facial

component detection,

# correct matches
recall = — : (3.14)
# true positive components

The recall rate represents the number of object componentstdeted correctly, so a feature
vector with maximum recall will not miss any component. Therds a correct match of an
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object component in a new image if the global minima of the diahce to the model is located
in the proximity of the ground truth facial component location. Proximity is de ned as a
circular region around the component's interest point, so pnis inside the circle are marked
as correct matches.

In Figure 3.4 we observe the average recall, marginalizing #&ksts for every degree of
freedom of the model. The marginalized results show that the rabadequate selections are:

=

is the parameter to sample uniformly,

2. two local maxima for each slice of EID are the type of local #ema to select Iter
frequency and width,

3. the Mahalanobis distance is the best metric to match objecomponent models,

4. the union of real and imaginary parts of the Gabor Iter respnse outperforms the use
of magnitude alone, and

5. the adaptive parameter selection outperforms the xed ler-based approaches.

In the second row of the rightmost column in Table 3.2, we see thdhe best recall
rate is located in the test that combines the previous selectis. The combination of -IDs,
Mahalanobis distance and 2 local maxima has a success rate of 95%

Let us summarize the results in a more formal way. The Gabor pareeter selection that
has the best performance is:

D I =f-D} ;-ID/; ; -ID/tg

where | 2T = f0;, =12  ;11=129. We select in each 2D slice-ID_. the parameters of
the two strongest local maxima:

(AR Fm) = arg max -ID
(AT M) = arg max -ID/ (3.15)
f; 67 puf6fig

The chosen parameters de ne a Gabor Iter bank of sizel2adapted to the object component
c. The respective local descriptor is:

uxy) = ul(xy); (Ut (xy) ! (3.16)

ut 2(x;y) = Re((g pmaoapa DOGY): U™ (6 y) = IM(( G gy e DOGY));
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Figure 3.4: Mean detection rate of marginalized tests of TabI3.2

ut 1 y) =Re(( ppeciape DOGY) UM OGY) =IM(( G g e 1(X5Y)):

and the Mahalanobis distance for matching the target model. file object component model
Is the mean and covariance matrix of local descriptor in Equan (3.16). In order to add
rotation and scale invariance to this model, we analyze rst th robustness of the component
model to image rotations and scalings.

Discretization e ects on rotated lters

We test the rotation invariance of the Gabor Iter response on a sythetic image and evaluate,
in the face data set, the e ects of Gabor response variations tmtated patterns. Due to
discretization e ects and imperfect Iter symmetry, Gabor response presents small variations
with the amount of rotation. To illustrate this fact, we (i) compute the response of a Gabor
Iter at center point of a synthetic edge image, then (ii) compite the response of a -rotated
Gabor lter at the center point of the -rotated edge image, and (iii) compute the response
di erences in magnitude and phase, considering the initial iage as reference. Figure 3.5
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shows the magnitude and phase errors for severalvalues. We can observe that there
are some errors in the magnitude and phase that, though not dratic, can change the
performance of the detection algorithm.

We perform a similar test in the facial detection problem, to seéhe variation of the
success rate of the component model when using rotated images. puek the component
model of Equation (3.16) as the reference, then we generateotated models. To generate
the -rotated component models we shift the angles in Equation (%),

ux;y) = ut(xy); U (X Y); ;utt(x;y) ' (3.17)

u* (x;y)=Re((g , . e oama DOGY)); u® 2(y)=Im((g , . pracams )X Y));
ut 1Y) = Re((9,, s ppeape DOGY): U06Y) =IM(( G 4 e e 1DOGY)):

We compute the recall rate of the -rotated model of Equation (3.17) in -rotated images.
We see the variation of recall rate for several values in Figure 3.6, when rotating both
the test images and the model. For simplicity, in this test we ra@tte the image regions
every =4, because it does not involve a recomputation of the target rdel, only a correct
circular shift of the vector is needed. We observe a very goodHawior of the rotated model
in the rotated images, with recall above 91% (in the non-rota&d test the performance is
95.8%). The implication of this result is important because wean add rotation invariance
straightforwardly to the object component model, a method tht will be explained in Section
3.4.2.

s =151 =23 s =151 =23
1.4 T T T T T T 0.45

0.4
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Figure 3.5: Gabor lter rotation robustness tests in synthetic inages.
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Figure 3.6: Rotation robustness of the component descriptor motated images.

Scale robustness

To check the robustness to scale variations, we compute the rdaalte in rescaled images
maintaining the object component model learned in the origal images. Figure 3.7 shows a
performance above 90% for image rescaling up t@20%, corresponding to a range of about
0.6 octaves. To cope with larger scale variations, one should eothe scale dimension with

additional object component models. If we sample the scale spageery 0.6 octaves, we
should be able to keep performance above 90%, provided that adequate scale selection
method is available, like the intrinsic scale from -signature presented in Chapter 2. In the

next section we go further by explaining how to attain theoratal scale invariance of the

object component model, which in practical terms enlarge ghscale robustness.

3.4 Providing scale and rotation invariance

In the previous section we have derived an object componentsdeiptor able to successfully
detect facial components. Although we have shown experimerifalts tolerance to scale and
rotation changes of the image components, this was only validr a small range. In this
section we propose methods that provide invariance to those trsformations.

3.4.1 Scale invariance

In order to provide scale invariance to the local descriptor iEquation (3.16), we rst analyze
how a Gabor response behaves with scale changes. Following thesoming proposed in [59],
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Figure 3.7: Scale robustness test of Gabor Iter based local deptor

we consider two imagesi (x;y) and an homogeneously scaled version bfx;y). The new
image is scaled by a factom asl¢(x;y) = | (ax;ay). The response of the scaled image at
point (Xo; Yo), is

(Is 9 )(Xo;Yo) (Zg 4 I's)(Xo; Yo)

g (XY)ls(Xo X;yo Yy)dxdy
ZZ

g« (Xy)l(axo ax;ay, ay)dxdy (3.18)

We now let x= ax and y-= ay. We then havedx = dx=a and dy = dy=a By making
substitutions in the Gabor function of Equation (3.7),

(Is g )(Xo:¥Yo) = (1 Qi=a;a )(aXo; aYo): (3.19)

From Equation (3.19) we can see that the Gabor response remairenstant in the scaled

image if we change both the width parameter of the Gabor Iter to a and the frequency
valuef to f=a.

Thus, if we are able to estimate the scale facta, we can calculate the adjusted values
of the width  and spatial frequencyf in order to compute the object component descriptor
in the scaled image. A common approach to compute the scale fact is to de ne an
intrinsic scale at the interest point of the object component. & a given object component we



3.4. PROVIDING SCALE AND ROTATION INVARIANCE 57

compute the intrinsic scale iy in the training set, for example using the -signature method
presented in Chapter 2. Then, to compute the component desctip in scaled images, we
take the following steps:

1. compute the intrinsic scales in the new image.
2. compute the scale factoa = s= i, and
3. compute an adequate approximation for the local maxima pameters of Equation
(3.15),
SEY= AP =120 =150

: (3.20)

ax
ST -0

[

8
Il
QD

where the left subscripts in g i, M and e stands for scaled image.

The new width and frequency in Equation (3.20) are the paranters to use now in order
to compute the feature vector of Equation (3.16). In the nexsection we will see how to add
invariance to image plane rotations.

3.4.2 Rotation invariance

The object component model in Equation (3.16) is obtained bgampling the angle of the
Gabor Iter uniformly. Thus, we must shift the angles to computethe feature vector in
rotated versions of the object component. When we discussed thedel robustness to image
rotation in Section 3.3.2, we mentioned that if the rotatios were known, we could match the
object by shifting the orientation parameter by the corresponding amount.

Since the rotation is unknown, we could adopt an approach sikar to the scale invariance
and de ne an intrinsic orientation. However, the common appraches for computing the in-
trinsic orientation are based on the global maximum of the hisggram of gradient orientations
[70], a procedure that is very sensitive to noise and small imagariations. Instead, we prefer
to match all possible orientations, a procedure that is more deanding computationally, but
very robust. We address the rotation invariance by matching hlpossible feature vectors
shifted in the orientation parameter and choosing the-shifted vector that is the closest to
the object component model.

Summarizing the procedure to match a feature vector in a scaénd rotation invariant
manner, we compute:

1. the feature vector parameters }** and f’}’;}‘ax;j =1;2;1 =1;:::;L, using the intrinsic
scales, as shown in Equation (3.20).
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2. rotated versions of the feature vector and nally picking he closest vector to the model.

3.5 Tests

We perform detection and location of facial components. Theests aim to: (i) verify if the
adaptive Gabor bank object component model is able to cormde classify an image pixel,
(i) verify the rotation invariance of the object componentmodel, and (iii) verify the scale
invariance of the object component model.

We perform an additional test in order to illustrate the e ect d the top-down saliency
function introduced in Chapter 2 on the performance of the lmal descriptor presented in this
chapter. We evaluate the e ect of the interest point selectiomlone by the top-down saliency
model SM. on the object component classi cation, using the adaptive Galwdbank descriptor
to match the facial components in new images.

We use 82 subjects from the AR face database [77], where half ofrthare used for learning
the model of ve facial components and the remaining half fathe component classi cation.
We consider left eye, right eye, nose, left nostril, and right rstril as the facial landmarks.
The object component model is learnt in a supervised manner atite model is computed in
ground truth points.

3.5.1 Classi cation of object components

In the training stage we compute the model (,.; ) of a facial component. Then, in the
matching stage we compute the Mahalanobis distance betweeretfacial component model
and the local descriptoru(x;y) at image point | (x;y). In order to classify the pixel ;y) as
facial componentc, we utilize the chi-squared test con dence probability to acept or reject
the local descriptoru(x; y) being drawn from the facial component model's distribution The
chi-squared test relates the feature vector size (\degrees oéeddom™) and the Mahalanobis
distance value to a con dence probability value. Thus, we cancaept or reject a local descrip-
tor u(x;y) with a certain con dence by choosing the correspondent Mahahobis threshold.
The retrieved image points are those below the Mahalanobisstiince threshold and those
points are marked as facial components. To quantify the perfmance in facial component
classi cation, we compute recall and precision for each faciabmponent

# correct hits

recall = — ;
# true positive components

(3.21)
# hi
correct nhits . (3.22)

recision = s
b # total hits
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The recall rate of Equation 3.22 represents the number of olefecomponents detected
correctly, so a feature vector with maximum recall will not mgs any component. The precision
rate represents the number of matches (hits) that nd object canponents, so a feature vector
with maximum precision will not nd false positive matches.

We set the con dence threshold to 99% and compute the Mahalanobis distance in the
test set images. We mark a hit if there is a facial component founalithin a circle of radius
r = 4 pixels around the groundtruth component location. The Hhis located outside the
groundtruth proximity circle are marked as false positives. Tale 3.3 presents the results
when classifying pixels as eye center, nose center, and nostehter.

Facial Point Recall(%) Precision(%) 130Rot Recall

Left eye 100 64.36 97.56
Right eye 97.56 50.33 97.56
Nose 92.68 79 92.68
Left nostril 87.8 60.68 87.8
Right nostril 82.92 72.32 82.92

Table 3.3: Precision and recall rates of facial component sk cation.

Recall rates in Table 3.3 show the very good recognition caphties of the adaptive
Gabor Iter-based descriptor. The precision rates re ect the mount of false positive detected
components in the images, due to the exhaustive search perfodnghe entire image). We
will explain in the next section how to improve the precision res by using the top-down
saliency model.

Scale invariance

To check the invariance to scale transformations, we compute ghrecall rate in rescaled
images maintaining the object model learned in the originaize images. In Table 3.4 we can
see the average recall of all facial landmarks.

scale change(octaves) Recall(%)

-0.5 83.19
-0.25 92.19
0 92.19
0.25 92.19
0.5 91.14

Table 3.4: Scale invariance test
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Although we have demonstrated theoretical scale invariance tife Gabor response, due
to discretization and sampling e ects, invariance is not possiblfor the whole range of scales
in real images. To attain full scale invariance, it is necessarg tapply a multi-scale approach,
computing the component model every octave (a very typicalalue [70]).

Rotation invariance

The rotation robustness of the component descriptor is tested Bection 3.3.2 and the results
plotted in Figure 3.5. In that section we show experimentally hat an appropriate circular
shift of the component descriptor is a suitable method to matchotated facial components.
However, the rotation robustness tests sampled angles only coinied in the Gabor Iter-bank
parameters.

The procedure to match angles not sampled in the model is presethin Section 3.4.2 and
we illustrate the application of the method by computing the ecall rate in the image test
set rotated by the angle 130 keeping the object model learned in the standard pose images.
The rightmost column of Table 3.3 shows that the recall remainapproximately constant for
an angle that is not sampled in the model.

3.5.2 Top-down saliency + adaptive Gabor lIter-based descrip tor

This group of tests integrates the saliency model based on thesignature presented in
Chapter 2 and the facial component classi cation procedure psented in the previous section.
In the initial stage, the saliency model makes a preselection o&ndidates for every facial
component. Then, at the points selected by the saliency modéie local descriptoru(x;y)
Is computed, to match components and classify points as comysms.

The approach of this section adds an extra step to the experinmtah setup described in
Chapter 2 (Section 2.7.2), the component classi cation. Cordgring the additional step, for
every object component we perform:

1. Application of the Local maxima of LoG operator at several séass. This procedure

(2.22).

2. Matching of the saliency modeSM, (Equation 2.20) with the scale invariant signature
=Sy (Equation 2.16) computed in the interest point set, keeping terest point loca-
tions with positive matches. The resulting interest point locabns form a subset ofP
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3. For every point in IP, the computation of the Iter-based descriptor u(Xcs; Yes) Of
Equation (3.16) and classifcation of the interest points usinghe Mahalanobis distance
with the chi-squared test.

This algorithm reduces the computational complexity durig facial component matching.
While the test described in the previous section (3.5.1) compes the adaptive Gabor bank
descriptor at every image pixel, the test presented in this seoti computes the descriptor in a
selected set of interest points. We see that the top-down saliencydel maintains practically
the same recall and improves substantially the precision rate tife classi cation. Comparing
the precision results in Table 3.%s: Table 3.5, we remark that the top-down saliency function
removes around 10% of false positives that the object compomefassi cation method is not
able to label correctly.

Facial Point Recall(%) Precision(%) Precision from Table 33 (%)

Left eye 100 74.63 64.36
Right eye 97.56 57.99 50.33
Nose 90.24 100 79
Left nostril 87.8 67.94 60.68
Right nostril 82.92 94.47 72.32

Table 3.5: Top-down saliency and Iter-based description tests

3.6 Discussion

We have introduced an adaptive Gabor bank local descriptor fabject components. The

presented descriptor belongs to the sparse type of lter-basedpresentation, allowing lower

feature vector sizes and more e cient matching procedures. Wle common approaches for
Gabor Iter bank descriptors adopt xed lIter parameters to r epresent local appearances,
we introduce an automatic Iter parameter selection method @ compute local descriptors

adapted to the particular object components. The techniqueof parameter selection is based
on the Information Diagram concept [53] that is extended inHis thesis to consider opti-

mization along all dimensions of the Gabor function paramets. The adaptive Gabor bank

descriptor presented is characterized by:

selection of the Gabor Iter parameters with largest energy taepresent a particular
object component,

invariance to image rotations, and
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high tolerance to image scalings.

We have used the adaptive Gabor bank descriptor together witthe top-down saliency
model proposed in Chapter 2. The results obtained allow to cdade that the top-down

saliency model:

reduces the computational complexity of the local descript@omputation and matching
procedure, maintaining recall rates practically equal totle recall rates computed in

entire images, and
improves classi cation precision of the adaptive Gabor bank deriptor.

We have explored the sparse lIter-based representations using liga lters, small size
local descriptors with e cient matching methods. We see that ou proposed descriptor
has excellent recall rates, but the precision rates are just aquable. Thus, it is suited
for applications with constant background, e.g. in human-nzhine interfaces in controlled
situations. For other types of applications in more general @ironments, in the next Chapter
we will explore histogram-based methods and propose improvente based again on the
automatic selection of Gabor lters.



Chapter 4
Histogram-based descriptors

We have proposed a sparse (small size) descriptor using the Ilterd®ad approach, attaining

very good detection results. In order to keep the recognitiorates in more challenging appli-
cations such as recognition in cluttered images, it would be cessary to change the descriptor
sampling approach, but maintaining the small size constraint fothe descriptors. The ap-

propriate representations that hold these requirements ardn¢ histogram-based descriptors,
the subject of study in this chapter.

Histogram-based methods for computing local image descriptofsllow a sequence of
steps: (i) The initial step is to select interest points in the scalepace (e.g. Hessian, Harris)
and compute the image gradient in the neighborhood of intest points (e.g. pixel dier-
ences, Canny detector); (ii) the descriptor is then obtainedybsplitting the interest point
neighborhood into smaller regions (e.g. cartesian grid, Iqggplar grid), and (iii) nally for
every subregion the histogram of the gradient orientation isoenputed with an appropriate
information selection procedure (e.g. weighting, PCA).

To date, the most remarkable descriptor in terms of distinctiveess is the SIFT local
descriptor [70], which computes the image gradient from pikeli erences, subdivides the
interest point regions in a cartesian grid, and for each subregi, computes the gradient ori-
entation histogram weighted by the gradient magnitude. The @scriptor is the concatenation
of all subregion's histograms, followed by a unitary normalizen.

In this chapter we present an alternative approach for gradig computation using smooth
derivative lters. In scale-normalized image regions, gradmt computation using pixel di er-
ences, as in [70], is quite sensitive to noise and other artifagtgluced by the image sensor
and the normalization procedure. One common approach to dinish the noise sensitivity is
to compute smoother approximations of the image derivativessing Iters. We use Gabor
Iters, which have been shown to approximate any image direanal derivative [58], by suit-
ably tuning their parameters. We propose a methodology to deethe Iters' parameters

63
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based on local maxima of the magnitude of the Iter response. Wenalyze the response for
several Iter widths, selecting the width in which the local maxmum is located [90].

Using Gabor functions as smooth lters, our approach improves #hdistinctiveness of the
SIFT local descriptor. To quantify the impact of our approachwe use the local descriptor
evaluation framework proposed in [83]. Several types of imegy (natural, structured) and
image transformations (viewpoint, scale, blur, JPEG, illummation) are employed in the eval-
uation process. This evaluation framework is presented in Semt 4.1. Then, in Section
4.2 we present our approach based on the SIFT descriptor and Galjgarameter selection
for gradient computation. Section 4.3 shows results of the cgarison between our method
and the original SIFT descriptor, under the framework preseed in Section 4.1. Finally, in
Section 4.4 we draw some conclusions.

4.1 Local descriptor evaluation

In this section we describe the main steps of the framework proged in [83] to compare local
image descriptors. The method can be summarized as follows:

1. Several image pairs are used for evaluation, each havingaatgcular type of image trans-
formation (blur, view-point, illumination, JPEG compressian, and zoom-+rotation).
Each pair is obtained by taking two pictures of the same objecdh di erent conditions
(position, camera/image settings).

2. For each pair a projective transformationH between the two images is computed by
standard homography estimation methods. Corresponding reg®ietween images are
called covariant.

3. Salient image regions are computed using invariant regiaketectors, like the Harris or
Hessian detectors. This process outputs elliptic regions in thevd images that are good
candidates for posterior matching. Knowing the ground truttprojective transformation
H between the images, @orrespondence tests proposed to evaluate the quality of the
invariant image detection process.

4. Candidate image regions are normalized for a ne and illumation transformations
using, respectively, the elliptic regions' parameters comped in the previous steps and
image region gray level statistics.

5. Each candidate image region is represented by the severadgtors under comparison.
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6. A matching testdetermines if two candidate regions (one on each image of tpair)
are similar. Three di erent matching methods are employed:i) thresholded euclidean
distance between the two descriptors, (ii) nearest-neighbornd (iii) nearest-neighbor
distance ratio. Based on the ground truth data, matches are dai ed as correct or
false.

7. As in the previous chapters, an evaluation metric is de nedpased on precision (ratio
between correct matches and all matches) and recall (ratio tweeen correct matches
and correspondences).

In the following sections we provide additional details on eh of these steps. We start, in
Section 4.1.1, by describing the types of images employed imettests and the homography
computation for the generation of ground truth data. In Sedbn 4.1.2 we focus on the
computation of salient image regions with several invariantagion detectors. The local region
normalization, descriptor computation and matching procegres are detailed in Section 4.1.3,
and nally, the computation of the overall evaluation metric (recall vs. 1 precision curves)
is described in Section 4.1.4.

4.1.1 Image data set

Figure 4.1 shows the test set images used to perform the local dgstor evaluation. These are
the same as used in [83] for the sake of comparison with the otherthwds. For each image,
one of ve possible image transformations is applied: Zoom + ration, viewpoint, image
blur, JPEG compression, and illumination. For viewpoint trarsformations, scale + rotation,
and image blur, two classes of images are considered: n@tural images containing a large
amount of randomly oriented textures, and (ii)structured imagescontaining many distinctive
long edge boundaries. In the case of JPEG compression and illuation transformations,
only images from thestructured type are employed.

An image pair is created for each transformation, containingdih the reference image and
the transformed image. In the viewpoint (locally a ne) transformation, the camera position
moves from a fronto-parallel view to one with foreshorteningt 40 degrees to the camera.
In the scale transformation, the scale factor is changed for 19 the image of Figure 4.1(a)
and 2.5 for Figure 4.1(b). In the image blur transformation, lhe focus ratio between the
reference and transformed image is 4. The JPEG transformatidkeeps 10% of the quality of
the original image. The illumination transformation variesthe camera aperture by a factor
of 4.

For the generation of ground truth data (computing the corret matches between the
two images), each pair of images is related by a homography. dlhomography is computed
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(@) (b)

(c) (d)

(e) )

(9) (h)

Figure 4.1: Data set used for local image descriptor evaluatio@doom + rotation 4.1(a) and
4.1(b), viewpoint 4.1(c) and 4.1(d), image blur 4.1(e) and .4(f), JPEG compression 4.1(g)
and illumination 4.1(h)
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in two steps: (i) a rst approximation is obtained using manually selected points, then
the transformed image is warped with this homography, and {iia robust small baseline
homography estimation algorithm is used to compute the residuhomography between the
reference image and the warped one.

4.1.2 Invariant region detectors

The following detectors have been considered \appropriatddr region matching. We will use
them in our tests:

The Harris-laplace detector [80] computes local maxima of @rnernessmetric using
the scale adapted second moment matrix [67] to nd initial candates. Then for
every candidate, it is checked if there is a local maximum in ale of the normalized
Laplacian of Gaussian. The regions detected are corners andgtions covariant to
scale and rotation changes.

The Hessian-laplace detector [70, 82] computes the local masiwf Hessian operator to
locate candidates spatially. Candidates that attain local raxima in scale of normalized
Laplacian of Gaussian are selected as interest regions. The methgovides blobs and
ridges covariant to scale and rotation changes.

Harris-a ne detector [82] is an a ne extension of Harris-laplace The nal step is to
compute the shape adaptation matrix [67] to perform an a ne nomalization. The
regions detected are corners and junctions covariant to a e transformations up to a
rotation factor.

Hessian-a ne detector [84] is an a ne extension of Hessian-laplaceThe nal step
is to compute the shape adaptation matrix [67] to perform an ane normalization.
The regions detected are blobs and ridges covariant to a neransformations up to a
rotation factor.

These methods provide not only the localization of the saliemegions but also geometrical
information regarding the intrinsic scale of the image regionThen, the region's dominant
orientation is obtained by selecting the peak of the gradiemtistogram. With this information,
each image region can be associated to an ellipge ) representing its dominant shape.

To evaluate the quality of the region detectors, a correspondee test is de ned. Two
image regionskR , and R | are corresponding if the overlap error is less than thresholg,

Ra\ RHT pH

1 2 — P <
Ra[ I:QHT pH

0 (4.1)
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In the previous equationR is the elliptic region de ned by x" x = 1, where has the
ellipse parameters, and is the homography between images. For all tests performed inish
chapter, we have xed o =0:5.

4.1.3 Local image descriptors

To represent the detected regions in a suitable way for matchgnan extended description of its
photometric properties must be provided. Before computingie local descriptors, every local
image region must be normalized for invariance to a ne transfionations and illumination.
Geometrical normalization is done using the region elliptiparameters, computed in the
previous step and illumination normalization is obtained byperforming a contrast stretching
using the mean and standard deviation of the region's gray vads.

After region normalization and descriptor computation, the natching step evaluates the
similarity between the descriptors (feature vectors) of imagesgions. Three matching proce-
dures are compared: threshold-based, nearest neighbor, an@nmest neighbor distance ratio.
In the case of threshold-based matching, two descriptors (fea&uvectors) u, and u, are
matched if the Euclidean distance is below a threshold. In thease of nearest neighbor,
a match exists ifuy, is the nearest neighbor tou, and the Euclidean distance between de-
scriptors is below a threshold. In the case of nearest neighbosstince ratio, we have the
descriptor u,, the nearest neighboy,, and the second nearest neighbar.. The descriptors
U, and u, are matched ifju, upjjgjus  Uujj <t. The threshold-based method may assign
several matches to the same descriptor, while the other two mettis assign one match only
to each descriptor.

4.1.4 Overall evaluation

The overall matching process cascades two main phases: detettal salient points and
matching the regions' descriptors. To evaluate the overall mehing process, aecall versus
1 precision curve is computed for each image pair. The recall of the reg® detected in
two images is de ned as:

# correct matches

recall = - —! 4.2
# corresponding regions (4.2)

The ratio between false matches and the total number of matcheas given by 1 precision

value:
# false matches

1 recision = :
P # correct matches+ # false matches

4.3)
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After completing the steps of Equations (4.2)-(4.3) above, @ns able to compare the matching
performance of any local descriptor using theecall versus 1 precision curve. A perfect
descriptor would giverecall = 1 for any precision. So the descriptor with largest area in the
recall vs. 1 precision curve is considered to have the best performance. In the next 8en
we describe in detail our local descriptor proposal.

4.2 Improving a histogram-based descriptor using Ga-
bor lters

In this section we rst review the SIFT local descriptor computéion in a normalized image
region. Then we present a modi cation of the SIFT descriptor, sing odd Gabor lters to
compute rst order image derivatives.

4.2.1 SIFT local descriptor

In the original formulation of the SIFT descriptor [70], a sca-normalized image region is
represented with the concatenation of gradient orientatiohistograms relative to several rec-
tangular subregions. First, to obtain the scale-normalized pehes, a salient region detection
procedure provides image point neighborhoods. The salien@n€tion is computed from the

scale-space of Di erence of Gaussians (DoG) and the image regigposition and scale) are
selected by the local extrema in the scale-space. In order to qoute the local descriptor,

the regions are scale normalized and the derivativég and |, of the imagel are computed

with pixel di erences:

Ix(xy)= 1 (x+15y) I(x 1y)
ly(;y)=1(xy+1) 1(xy 1) (4.4)

Then the image gradient magnitude and orientation are comped for every pixel in the
image region:

q
MOGy) = L(xy)?+ 1,(xy)? (4.5)

( xy)=tan (1y(%y)=l(X;y)): (4.6)

The interest region is then subdivided in a rectangular grid. igure 4.2 shows examples of the
gradient magnitude and orientation of an image region andstcorresponding 16 subregions.
The next step is to compute for each subregion the histogram ofaglient orientation,
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(a) normalized image region (b) M(x;y) ©) ( x3y)

Figure 4.2: Example of gradient magnitude and orientationmages

weighted by gradient magnitude. Orientation is quantizednto 8 bins and each bin is set
with the sum of the windowed orientation di erence to the bin enter, weighted by the
gradient magnitude:

X
hr ., (K) = M;Y)D j (xy) aj= «); (xy)2bink; (4.7)
XY 21 (1m )
where ¢ is the orientation bin center, | is the orientation bin width, and (x;y) are pixel
coordinates in subregiomn.my. The SIFT local descriptor is the concatenation of the several
gradient orientation histograms for all subregions:

U=(hrg i, iiiihe,,) (4.8)

The nal step is to normalize the descriptor in Equation (4.8) b unit norm in order to reduce
the e ects of uniform illumination changes.

The gradient orientation is not invariant to rotations of the image region. To provide
orientation invariance, Lowe proposed to compute the orieation of the image region and
set the gradient orientation relative to the region's orierdtion. The orientation of a region
is given by the highest peak of the gradient orientation histagm of the image region.

We have based our work on an approach similar to the one describeere. However, the
gradient computation in the original SIFT descriptor is donewith pixel di erences which
are very sensitive to noisy measurements and not adapted to thetoneal scale of edges in
the normalized region. In next section we explain an alternsee way to compute the image
derivatives of Equation (4.4), using Gabor Iters with propely tuned parameters.



4.2. IMPROVING A HISTOGRAM-BASED DESCRIPTOR USING GABOR FILTERS 71

4.2.2 Gabor functions as smooth image derivative lters

The computation of image derivatives with pixel di erenceds an inherently noise sensitive
process. Pixel di erences implement &igh-pass Itering operation on the image spectrum,
amplifying the high frequency range, which is mainly compodeby noise. To avoid such
sensitivity, it is common to combine alow-pass Iter (image blurring or smoothing) with
the high-passderivative lIter, resulting in a band-pass Iter, which we denote by smooth
derivative Iter. This e ect can be implemented by either pre-smoothing the iage followed
by the derivative computation, or by convolving the image wh a band-passlter combining
both phases. The important question to address at this point is \bw much blurring should
we apply to the image ?", or equivalently, \which frequency and should theband-pass Iter
focus on ?"

Several smooth derivative lters have been proposed for imagéering. Both Gaussian
derivatives [58] and Gabor lters [38, 21] are common choisebecause of their properties
and the availability of fast computation methods [123]. Gausan derivatives [58] are smooth
Iters that can compute the image derivatives of any order. Tiey have good noise attenuation
properties due to an implicit image Gaussian Itering. In Figue 4.3 we show examples of the

Figureﬁl._B: Examplﬁsi of Gauss'ﬁlg rst order kernel in the direction for
=f2 2=8; 4=3; 4 2=3; 8=3; 8 2=3; 16=3g.

Gaussian rst order derivative kernel. We use Gabor lters for tle computation of smooth
image derivatives due to the following facts:

With appropriate parameters, odd Gabor lters can approximé& odd-order Gaussian
directional derivatives [58].

Gabor Iters have a larger number of parameters than Gaussianedvatives, thus be-

ing more easily customized to each particular purpose [101, 2122, 75, 68, 50, 24].
Previous works have shown the advantage of Gabor lIter paraner selection in edge
computation [93, 124] by de ning an edge threshold criterioftbased on Gabor lter

parameters.

Notice that the rst fact listed above tells us that the best perfamance with Gaussian deriv-
ative lters can also be achieved with Gabor lters, and the seand fact suggests that a more



72 CHAPTER 4. HISTOGRAM-BASED DESCRIPTORS

careful parameter tuning of the Gabor parameters may possiblgad to better performance.

4.2.3 Gabor lters for image derivative computation

Gabor functions are de ned by the multiplication of a compl& exponential function (the
carrier) and a Gaussian function (the envelope).

1 (xcos +ysin )2 (ycos  xsin )?

I ex
Qo =5, P 22 22

2 .
exp i—(xcos + ysin )
(4.9
In the previous expression,X;y) are the spatial coordinates, is the lIter orientation, is
its wavelength, and ; and , are the Gaussian envelope standard deviations, oriented along

directions and + =2, respectively.

To compute the rst order image derivativesl, and |, we will use the odd (imaginary)

part of the Iter. The orientations willbe =0and = =2 for, respectively, the horizontal
and vertical derivatives. To approximate the shape of an odd Gar Filter to that of a
Gaussian derivative, we set; = 5, = and we introduce™ = = |, a variable that is

proportional to the number of wave periods within the Iter width. By xing an appropriate
~ value, we will obtain an expression of the Gabor Iter with a sintg parameter, the Iter
width

If we look at the shape of the rst order Gaussian derivatives at gnscale in the derivative
direction, there is one wave period within the spatial supporbf the Iter, which roughly
corresponds to =6 . Replacing this value in™= - yields~=6. Byreplacing = =
and ~ = 6 in Equation (4.9), we obtain the Iter being used in the remander of the chapter:

1 x2+y? 2 : .
Ocy: ()= ﬁexp 2 sin 6—(x cos +ysin ) ; (4.10)
where =0 computesly, and = =2 computesl,. The choice of will be done by an

optimization procedure, based on the Iter energy at locatins with high gradient magnitude.

4.2.4 Scale selection

In this section we propose a methodology to select a value for teeale parameter , such
as to maximize the energy output of the smooth derivative Ites in the analysis of the
normalized regions obtained in the interest point selectionrpcedure. We notice that, at this
point, we have image regions that are already scale-normald; therefore the scale-selection
procedure we are proposing here should choose one single scaieeviar all regions.

Figure 4.4 shows examples of the odd Gabor Iter to compute thg at several values. In
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Figureﬁl._4: Exampllgs_ of odd G%b_or functionsat=0, =6, and
=2 2=3; 4=3; 4 2=3; 8=3; 8 2=3; 16=3g.

order to select the best scale, we will use the gradient magnitudeer all selected features in
all images in the data set, due to its key role of weighting thergdient orientation histogram
in the SIFT computation. In fact, the scale-normalized gradint magnitude has been used to
measure edge strength in scale-space [64]. However, this measuireot very stable at large
scales, sometimes leading to the selection of scale values highan the actual feature scale
[64]. This problem has been addressed in the context of edge scsgtlection [65], using the
concept of -normalized derivatives.

We have made some preliminary test with this methodology, buthe results were not
promising, mainly because the features obtained in the intesepoint selection phase are not
only edges, but also blobs, corners, junctions, and other struces. Additionally, the image
regions we are considering are already scale-normalized, se Htale selection procedure is
a local search, as opposed to-normalized derivatives in [65]. Therefore, we propose the
following methodology to avoid the bias toward large scalen the scale-normalized gradient
magnitude by:

considering independently the components of the normalizepladient magnitude, and

biasing the scale selection criterion to smaller scale values &ach component, to avoid
the non-decreasing behavior of the normalized derivativesrflarge scales [64].

Following these criteria, we pick the Gabor lIter with largestenergy in thex andy directions
and, from these, we select the smaller scale:

Moo= argmaxj(l Gy =0( )]

Ayo= argmaxj(l o Oeuyi; = =2( )]

AXicy) = omin(® N,
(X3 ¥i) = (1 Geuyio(™)(Xisvi)
ly(Xi;¥i) = (1 Gxyir=2(")(Xis %i): (4.11)
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where ;;y;) is a point in the scale-normalized region, and s the adequate Iter width at
position (X;V;).

Computational complexity

The local minima selection of Equation (4.11) has an obviouslyigher computational com-
plexity than the pixel di erence of Equation (4.4). In a scalenormalized image of siz& S,
the complexity of the pixel di erence and Itering is O(S?), while the odd Gabor scale selec-
tion of Equation (4.11) has a complexity value of

O(S? (C F +2F +1)); (4.12)

where C is the number of operations per pixel to compute the response afie Gabor lter
and F is the number of Gabor Iters applied. Using the state-of-the-d fast implementation

of Gabor Iters, C = 60! operations per pixel [6, 7], and= depends on the type of multi-
scale implementation and the size of the normalized region. Asvare dealing with scale-
normalized regions, the search along scales of Eqs. (4.11-4.11) can be replaced by a single
scale suitable for all normalized images, thus yielding a conepity of O(S?> C).

4.3 Experimental results

First we address the selection of a single scale value of the Gablber suitable to compute the
image derivatives for all image regions. Then, we present thesults of image region matching
experiment and evaluate the advantages of smooth derivativiters in SIFT computation.

4.3.1 Gabor Iter scale selection

Aiming to reduce the computational complexity presented in Egation (4.12), we select a
single Iter suiting all cases. The single Iter selection reducethe complexity of the image
derivative computation from O(S?> (C F +2F +1)) to O(S?® C). We compute the
relative frequency (i.e. histogram) of the Iter width ~ in Equation (4.11), using all the
scale-normalized image regions of the image data set presentedrigure 4.1. To avoid
noisy " values, we pick pixels with gradient magnitude above a certaithreshold. We plot
the marginalized (structured and textured) histograms and tk total histogram in Figure
4.5. When comparing structured versus textured images, we obgerthat in the case of
textured images the bins located at the left side of the histogm peak are all larger than the

1Considering an isotropic and non-zero mean Gabor Iter implementation
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Pixel di erence of Eqs. (4.4-4.4) 0.44 ms
Multi-scale optimization (Gabor) of Egs. (4.11-4.11) 9.75 ms
Single scale (Gabor) of Egs. (4.13-4.13) 1.01 ms

Table 4.1: Execution time of C implementations, in a Pentium 42.80 Ghz. Average value
of the x derivative computation for all the normalized regions (sizd1l 41) selected in the
images of Figure 4.1.

equivalent bins in the structured images histogram. This is aexpected behavior because the
high gradient magnitude points in very textured images have very small spatial support,
while in structured images the points with high gradient magitude have a larger spatial
support. We also notice the di erence of peak location betweestructured (» = 1:88) and
textured (* = 1:58) images.

Although we biased the lter width selection to small values using=quation (4.11), it
still will select high Iter width values in some of the image pants (around 10% of image
pixels), blurring the image gradient in some regions. This bek@ur would lead to the loss
of important histogram information in some subregions. In ordeto avoid these high Iter
width values, we select the peak of the histogram in textured images (Figure 4.5).

(1 Gay:0(1:58))(x;y)
(1 Gy = 2(1:38))(X y): (4.13)

Ix(XY)
ly(X;y)

Equation (4.13) provides a fast approximation of the scale selon of Equation (4.11),
keeping the advantage of a smoother image derivative approxation versus the pixel di er-
ences of Equation (4.4). In the next sections we present the pemmance improvement of
the SIFT descriptor by using Equation (4.13). However, we pay # price of performance
improvement by increasing the computational load of the imagderivative computation, as
shown in Table 4.1. Despite that the theoretical complexity aalysis indicates a 60 times
slow down with our approach, in practice we veri ed that it ony slows down 2-3 times, thus
maintaining a real-time functionality. The explanation ma be related to the pixel access
times to perform the subtraction, that were not considered inte theoretical analysis. Ad-
ditionally, the xed computational cost of the image normalkzation will further smooth out
the di erences between the two methods.
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4.3.2 Image region matching

In this set of tests, we computerecall vs 1 precision curves for all types of: (i) image
transformations, (ii) image detectors, and (iii) structured aml textured images. We show
in Figures 4.6-4.7 samples of theecall vs 1 precision curves, remarking that the curve
of our descriptor is always located above the original SIFT cwe for the threshold-based
criterion. We notice a similar behavior for all experimentsit appendix B), improving the

SIFT matching performance by the utilization of smooth deriative Iters (Gabor lters).

4.3.3 Discussion

In order to evaluate quantitatively the improvement of our akscriptor over the original SIFT
descriptor, in every experiment we compute the di erence inecall rate for a xed precision
value of 0.5. We see in Table 4.2 that our method for computinglfST local descriptor
improves SIFT distinctiveness for all the matching experimds. It is also important to note
that the improvement attained by our descriptor depends on: i) type of detector and (ii)
matching criterion. In the case of detectors, Hessian detectorse a improvement greater
than Harris detectors for every matching criteria. Also the impovement depends highly
on the matching criterion, as recall improvement in the threhold-based method is about 10
times larger than the improvement in the nearest-neighbor nmieods. This di erence is related
to the di culty of improving the performance of the nearest-neighbor methods, because it
demands a high precision rate with very few correspondences.

Harr | Hess| Struc | Text | Total

Threshold| 2.7 | 4.3 3.7 2.3 3
NN 0.36| 0.75| 0.59 | 0.56| 0.54

NN ratio | 0.23| 1.33| 0.5 | 1.02| 0.68

Table 4.2: Mean value of the recall di erence (%) between oBIFT descriptor and original
SIFT [70], at precision =0:5

4.4 Conclusions

In this chapter we have presented a modi cation of SIFT descripr based on odd Gabor
Iters as smooth derivative Iters. The modi cation proposed computes the rst order image
derivatives using odd Gabor Iters as convolution kernels. Té lters' parameters are selected
by maximizing the Iter response at locations with high image tadient. To evaluate the
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performance of our descriptor we use the Mikolajczyk and Scharframework [83], computing
recall vs. 1 precision curves of image regions matched by local descriptors. Our deptwr
improves the SIFT distinctiveness in average.

The results of the image region matching experiments show thdistinctiveness improve-
ment is highly dependent on: (i) the matching criterion and i{) the interest point detector.
We obtain the best improvement results using the threshold-basadatching criterion and
Hessian-based interest point detectors.

We show experimentally that our descriptor proposal improveshe performance in the
single image region matching task. In the next chapter we willvaluate its performance in a
full object recognition scenario.



Chapter 5
Object recognition experiments

In this chapter we use state-of-the-art recognition methodsased on object components
to validate, in a full recognition system, the component seleicn and matching methods
proposed in the previous chapters [91]. We do not aim to proposew methods for object
recognition, but perform comparisons between di erent type of object component detectors
and descriptors.

Component-based object models have been shown to perform velkluttered scenes and
enjoy nice properties such as invariance to rigid transformiains and robustness to partial
occlusion and non-rigid transformations. Objects are repreded as the collection of their
parts [70, 62, 47, 1, 114, 4, 29, 30] and each part is modeledablpcal descriptor. Then, the
overall object model is built either by the concatenation othe appearance of each part (i.e.
appearance-only model) [96, 109] or considering the pose betw components (i.e. shape-
and-appearance model) [33, 47]. The experiments conducti@&dthis chapter consider both
types of models.

To represent an image category, the appearance-only modeléesta set of descriptors
from training images containing objects in that category. @en, because it is a tedious
process, no object segmentation is performed in the training ages. The model uses both
foreground (object) and background data and can be seen as abject+context” represen-
tation. We adopt the model presented in [109] that considers @rt categorization as a two
class problem (object samples vs. no object samples). The numbétazal descriptors that
represent the category is a parameter of the learning algdmih. We consider nine di erent
object classes: airplanes, cars (lateral view), cars (rear vigwamels, faces, guitars, leaves,
leopards, and motorbikes Google thingsis used as the no-object (background) category (neg-
ative examples). We employ AdaBoost and SVM learning algorithm® estimate the class
models and perform recognition. The local descriptors used tinese tests include SIFT [70],
HMAX [103], and the SIFT improvement introduced in Chapter 4.

81
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Shape-and-appearance models consider both the geometria garation of the compo-
nents and their appearances. In our tests we will use the pictatistructure model of [47]. Itis
a probabilistic approach that models the objects using a staike graph model whose vertices
represent object components and edges represent the relatp@sition between components.
This model allows object translations and is robust to small sdalys, but it is not fully in-
variant to object rotations and scalings. We apply the pictorl structure in a face detection
task to evaluate the techniques previously presented in this éisis: (i) the top-down saliency
model, (ii) the adaptive Gabor lIter bank, and (iii) the Gabor-based SIFT descriptor.

Additionally, we compare the adaptive Gabor descriptors prapsed in this thesis against
the state-of-the-art, the HMAX [103] features. We compare the selt of the recognition
procedures, including not only the recognition performanese but also the in the computa-
tional complexity, which may be a factor to take into accountwwhen deciding on a recognition
method in particular applications.

We start with a brief review of the state-of-the-art approache for component-based object
recognition.

5.1 Component-based object models

To select appropriate object models for the experiments weuview brie y the state-of-the art
literature and evaluate qualitatively the di erent approaches in the eld.

Early approaches to object recognition model the object byts contours [71, 48, 104].
These approaches are able to cope with image a ne transformatis and have been shown
to be computationally e cient. However, these approaches ha/two serious caveats: (i) they
assume that contours of objects can be reliably found in the irgas, which is not often the
case in natural images, and (ii) since they rely on the boundaggthey neglect important
information contained in the object's interior.

Instead, most of the recent approaches have adopted a companeased approach [10,
121, 70, 62, 47, 1, 114, 4, 29, 30]. The appearance of each aorapt can be combined in
two distinct ways: (i) disregarding geometric relations betwen components (i.e. appearance-
only) and (ii) using pose between object components (i.e. shapad-appearance). In both
cases, most of the works propose probabilistic approaches to camebcomponent appear-
ances and build the object model. Probabilistic approachesave been preferred over other
techniques due to their ability to compute a con dence valuef the object detections and
the availability of machine learning methods using such appaghes.
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5.1.1 Appearance-only approaches

Appearance-only models combine information of a large numbeaf local descriptors in a bag-
of-features approach and have been shown to be robust to ocatusand other noise sources.
Additionally, this approach allows to use both foreground (oject) and background (context)
data to model each object category. Since these methods do monsider the pose between
parts, it is di cult to obtain a precise estimate of their locati on in the images. The most
remarkable examples of the appearance-only approach are:

\Bag of keypoints" [19]. A bag of keypoints corresponds to a chter in the local
descriptor space. The object model consists of a histogram thatwts the number
of occurrences of clusters for a given class. The main contribrt of this work is the
experimental demonstration of visual categorization using @garance only.

Boosting of local descriptors [96, 97]. Opelt et al. present awerersion of boosting in
which the weak classi er is replaced by a weak-hypotheses- ndeiThe weighted sum
of all weak-hypotheses provides the nal classi cation. The ma contribution of this
work is a new boosting algorithm that uses di erent kinds of loal descriptors to classify
objects.

The kernel recipe to apply Support Vector Machines (SVMs) witHocal descriptors
[119]. Wallraven et al. propose kernels that guarantee thenkarity of the SVM classi-
cation function (Mercer kernels). The main contribution of this work is the de nition
of kernels to apply the linear SVM in non-linear feature spaces.

Cortex-like local descriptors [109]. The main contributioa of this work are: (i) a new
general framework for object recognition, which is highly otivated by biology, and
(ii) the versatility of the di erent levels of the hierarchy to perform a wide range of
recognition tasks such as scene understanding, multi-class @agzation, and single-
object recognition.

5.1.2 Shape-and-appearance approaches

Shape-and-appearance models consider both the geometrin garation of the components
and their appearances. In its original form [33], the model osists of a set of templates (i.e.
parts, appearance, local descriptors) arranged in some geoneirton guration (i.e. struc-

ture). Object deformations can be modeled as a series of spsngpnnecting the individual
parts. The goal of the model is to minimize a cost function withwo terms: parts matching
and deformation. Several works have adopted this idea, proging various alternatives for
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both terms of the cost function. In the following, we review te most remarkable works using
this approach:

A ne invariant object detection and location [70] based on SIH features [69]. An
initial interest point set is provided by local maxima in space lad scale of the Di erence
of Gaussians (DoG) operator. Appearance is represented by thestogram of image
gradient orientations at interest point neighborhoods. Shapis modeled by the interest
point locations in the training image. The main contributian of this work is the real-
time and very robust performance in matching objects, mainlyni the rst two main
stages, the interest point detection and local appearance coutgtion.

Weakly supervised scale invariant object recognition [29]. fgus et al. revisited Fis-
chler and Elschlager's model [33], proposing a model that codis jointly the location,

scale, and appearance of every object component as parameter estimate. Given a
training set with labeled images (object/no object), the paameters are learnt in an
unsupervised manner, using the expectation maximization (EMglgorithm. The main

contributions of this work are: (i) unsupervised and joint leening of appearance, lo-
cation and scale parameters, and (ii) the addition of componescale to the object
model.

E cient learning and exhaustive recognition [30]. Later Fegus et.al. explored several
variations of the constellation model in order to address préws short-comings: (i)

the joint nature of shape model results in an exponential ex@omn in computational

cost, (ii) good performance is highly dependent on the intese point detection phase,
and (iii) the model has many parameters, so the number of traing images must be
large. The main contribution of this work is the reduction ofcomputational complexity

that allows to: (i) model objects with several (more than six) omponents, (ii) perform

e cient learning in terms of computation time, and (iii) per form exhaustive recognition
by removing the interest point detection stage.

Pictorial structures [47]. The main contribution of this wok is the reduction of com-
plexity when matching the model by: (i) using a star-like graph(i.e. tree) instead
of an unconstrained graph, and (ii) using the generalized distae transform [105] to
e ciently compute the model probability.

Weakly supervised learning of part-based spatial models [17]. hi§ work is a gen-
eralization of pictorial structures [47] in two aspects: (i) tle star-like graph model is
generalized to &-fan model, a graph with a central clique ok reference nodes, with the
remaining nodes connected to ak reference nodes, but to none of the non-reference
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nodes, and (ii) both the appearance model and shape model ararfg jointly in a

weakly supervised manner (object label, but no segmentation)The main contribu-
tion of this work is the proposal of a weakly supervised learningf an object model,
computing appearance and shape jointly in a graph model.

Multiple object detection [79]. Objects are modeled by a jot distribution of shape and
appearance, computed in a hierarchical manner. The contubons of this work are:
(i) the capability of detecting multiple object classes simulineously, and (ii) the com-
plexity and run times are improved compared to other objectecognition approaches.

Sharing features for multi-class and multi-view object detgion [114, 115]. This work
shows that sharing simple features (image patches, binary spdtraasks) across classes
attains very good recognition rates. The main contribution bthis work is the reduction
of the number of features while maintaining very high recoggion rates in multi-class
problems.

5.1.3 Qualitative comparison of object models

Appearance-only methods have shown very good recognition eat even though the poses
between object components are not utilized. Their robustneds occlusions and non-rigid
transformations allows their application in cluttered ima@s with objects in several con gu-
rations. The main drawback of appearance-only methods is thk culty of locating objects.
However, in particular object categories it is possible to giva crude estimate of the object
location, provided by a bounding box that separates objectdm background. Another issue
to consider is the amount of foreground (object) and backgrod data contained in the model.
Learning object models in unsegmented images can lead to a tkground model" instead of
\object model," as reported by Opelt et. al. [97]. However, ti$ problem is common to all
methods that do not perform a pre-segmentation of the objectgots in the training set.

Amongst all appearance-only models, the Cortex-like mechanisrifor object recognition
[109] have shown very good performance and versatility in seakkinds of visual tasks.
Additionally, they use a dense Gabor Iter-based representatioHMAX) to compute local
descriptors, which will allow us to compare the performance afense (large size) Gabor
Iter-based local descriptors (HMAX) against small size histogram-tsed descriptors (SIFT)
in object recognition tasks. Thus, we choose the appearanceyombject model of Serre
et al. [109]. Within this context, we will compare the folloving descriptors: the SIFT local
descriptor [70], the proposed version of SIFT using Gabor lter&Chapter 4), and the HMAX
descriptor [103].
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Regarding shape-and-appearance models, there is a much widerge of works and dis-
tinct approaches, thus making a qualitative comparison betvem methods harder. Initial
approaches [63, 10, 121] used appearances only as a mean tacedhe complexity during
the shape matching procedure. Subsequent approaches exfiancluded appearance in the
model [29, 30], but resulted in an increased complexity on pameter learning, implying a
huge number of training samples. Recent works tackle these dia@cks by proposing e -
cient learning and matching probabilistic models such as thestar" graph [30, 47] and the
generalization of the \star" graph to the k-fan model [17]. A very recent work [79] is able to
estimate jointly the appearance and shape distribution paranters and locate multiple in-
stances of several classes in one image. Amongst the shape-and-ajapee models reviewed,
the pictorial structure [47] integrates several state-of-thart properties: (i) the parameters
of appearance and shape probability distributions are estimed jointly, (ii) it is very fast in
computational terms, and (iii) it handles partial occlusionsof the object. Thus, we choose
the Huttenlocher and Felzenszwalb pictorial structure [47] tassess the models presented in
this thesis: (i) the top-down saliency model to make a pre-seléah of every face component,
(i) the adaptive Gabor lIter-bank to represent components, ad (iii) the Gabor-based SIFT
descriptor.

We proceed now with a more thorough explanation of the seledtenethods, followed by
the description of the experimental setup.

5.2 Appearance-only object recognition

Due to the success of the HMAX approach [103] in appearance-onlyject recognition in
clutter, as well as scene understanding [109], we will adopt aslar architecture for our tests.
First, we will brie y revise the method proposed in [109], explaed in detail in Chapter 3.
Then, we will explain how this architecture can be adapted tgerform not only with the
HMAX features but also with other types of local descriptors. Finly, we will present results
of the application of such architecture in a object recognitn problem and compare the
performance of the employed descriptors, namely the originellMAX and SIFT, our SIFT-
Gabor descriptor, and a baseline cross-correlation method.

The HMAX appearance-only model represents an object class by aga number of ran-
domly extracted patches. The rst two steps of the HMAX procedure $1 and C1 maps)
compute, for each pixel in the images, a vector containing thecal maximum in adjacent
scales of the Gabor Iters responses for the di erent orientatins. Therefore, they provide
the representation with local scale robustness. The third step sete C1 patches that contain
the object or class representation, using images in a trainingtserhe collection of all C1
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patches extracted will provide an appearance-only repregation of the object class.

In [109] the selected C1 patches are obtained from a large setafidomly selected points
from the class images. The rationale is that, from unsegmentethages, is is not possible
to decidea priori where to obtain points in the objects of interest. Only seleatg a large
number of points, we will have a reasonable likelihood of sele points in the object region.
Obviously, the background will also be represented, but if themage set is large, it is likely
that the background is very dierent in the data set images andconstancy of the object
appearance will bias the representation to include more olgferelated information. Anyway,
even when the background does not change signi cantly betweemages (e.g. airplanes,
cars), the data set will provide contextual information that s also useful in the appearance-
only object recognition. In our experiments we will also test gections at bottom-up interest
points computed at DoG local maxima in scale{space.

The remaining steps (S2 and C2 maps) comprise the multi-scale anulti-orientation
matching steps. Every C1 patch in the collection that represestthe object, is matched in
the entire new C1 image, retaining the strength of the most sinat point in the image to the
C1 patch under consideration. The maximum similarity value oéach patch is collected into
a vector, that is used to train a binary classi er with positive ard negative examples of the
object class.

5.2.1 Appearance-only object model

The HMAX model described above employs a particular type of ltebased dense descriptors
to represent the appearance of an object class. In this section want to benchmark the
performance of several di erent types of descriptors, not oniyhe HMAX but also the original
SIFT, our SIFT-Gabor model, and the normalized cross-corrdian. One of the peculiarities
of the HMAX recognition architecture is that, instead of directy using the descriptors of
the class in a supervised classi cation framework, it uses vectdisat already express some
degree of match between an image and the object class to redagn Given the success
of this approach in appearance-only recognition, we adophis idea and adapt the HMAX
recognition architecture to cope with di erent types of desgptors in a unifying framework.
We also consider an additional step of initial interest point set¢ion oriented in a bottom-up
fashion, introducing an attentional mechanism to avoid perfoing the computations in the
whole image and thus reducing the computational cost.

The following lines describe the steps of the training methotmy:

1. SelectM interest point locations from the training set imaged 14;:::;1¢;:::;170. In
[109], all points are processed (full sampling). Additionallywe test interest point
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selection with DoG maxima.

and constitute the appearance{only object class representati. This corresponds to
step 3 in the HMAX model.

in the training set. Pick the descriptorsu; that belong to imagel; and compute the
similarity v, of the descriptorus,

8
Sminikus, uik® i=1;::MAI6 sU2 1y SIFT
Vp =
- max; maxy, exp(  kus, uik?®) i=1;:::;M”7i6s,u;21; HMAX
(5.1)
This corresponds to steps 4 and 5 in the HMAX model.
5. Use similarity vectorsV q;:::;Vy;:::; V1 with their respective labelc = f0; 1g in the

learning algorithm.

If we use C1 features as descriptors in step 2 and a full image samglin step 1, this
methodology is equivalent to the original HMAX [103] and the @ss similarity feature vector
V. correspond to the C2 features of Serre et al. [109].

After learning the object model, the steps to detect an instancef the object category in
a new image are as follows:

1. SelectJ interest point locations.

2. Compute local descriptors in the new image;;j = 1;:::;J at interest point locations.
3. Createclass{similarity feature vectorV =[vq;:::;V,;:::;Vn] by matching each class
model point descriptorus, against all image descriptorsi; .
8
Sminj kus,  ujk® j =110 SIFT
Vh = (5.2)

- max; max,: exp(  kus, ujk?®) j=1;:::;3 HMAX

4. ClassifyV as object or background image, with a binary classi er.

The classi er will operate on vectors of dimension N. Similarlyd Serre et.al. [109], in our
tests we will use SVM and AdaBoost binary classi ers.
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Figure 5.1: Selected images from each category

5.2.2 Experiments with the appearance-only model

Experiments are performed with a set of image categories pided by Caltech?® : airplanes
side{view, cars side-view, cars rear{view, camels, faceguitars, leaves, leopardsand motor-
bikes side{view plus the Google thingsdataset [30]. For every category, we use th8oogle
things as negative samples. For training we randomly choose 100 imadresn the positive
set and other 100 from the negative set. Figure 5.1 shows some samphages from each
category. For all experiments, images have a xed height of @4ixels, keeping the original
image aspect ratio and converted to gray-scale format.

The setup of every category recognition experiment requirése selection of: (i) a local
descriptor type, (ii) the number of descriptors, and (iii) the earning algorithm. Each ex-
periment is repeated 10 times using di erent training and teshg sets and the evaluation
criterion is the classi cation performance at the equilibrim point of the ROC curve (i.e.
when the false positive rate is equal to the miss rate), along withe con dence interval (at
95%). The local descriptors used in this test are:

original HMAX, as explained in Section 3.2.1.

HMAX computed at DoG. The nal three steps of the original HMAX are mmputed
at DoG interest points. Thus, patch extraction and matching is dne at DoG points,
instead of the random procedure of [109].

original SIFT, as proposed by Lowe [70].

SIFT non-rotation-invariant (NRI). The orientation normal ization procedure is re-
moved from the original SIFT descriptor.

SIFT-Gabor. The modi cation of SIFT descriptor introduced in Chapter 4.

!Datasets are available at: http://www.robots.ox.ac.uk/~vgg/da ta3.html
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SIFT-Gabor NRI. The modi cation of SIFT descriptor, removing the orientation nor-
malization.

Cross-Corr. Normalized cross-correlation

We vary the number of local descriptors that represent an objecategory,
N = f5;10; 25,50, 100 250 5003. In order to evaluate the in uence of the learning algorithm
we utilize two classi ers: SVM [98] with a linear kernél and AdaBoost [37] with decision
stumps.

Support Vector Machines

Airplane Camel Car-side Car-rear
TF/NF 10 | 500 10 | 500 10 | 500 10 | 500
HMAX 873,22 | 959,10 | 704,3.1 | 843,22 | 879,40 98.1,15 | 93.0,1.1 | 97.7,0.8
HMAX-DoG 80.3,26 | 949,08 | 70.2,39 | 839,14 | 889,38 | 995,09 | 86.6,1.8 | 97.0,0.7
SIFT-Gabor-NRI 70.0,46 | 842,18 | 59.9,2.7 | 66.6,08 | 739,38 | 783,28 | 719,19 | 848,11
SIFT-Gabor 69.6,4.1 | 828,24 | 554,31 | 653,28 | 66.7,53 | 749,40 | 634,29 | 79.2,24
SIFT-NRI 70.2, 2.5 84.9, 2.1 575,25 66.7, 1.6 73.4,2.2 78.3, 3.8 74.1, 2.0 84.0, 2.4
SIFT 67.5, 4.9 829,14 57.7, 4.8 64.7, 3.1 68.1, 3.8 725, 4.3 63.0, 3.1 78.8, 2.0
Cross-corr 67.5, 3.7 81.4,1.2 55.2, 45 64.5, 2.3 715,29 749, 3.1 65.1, 3.3 78.9, 1.2
Faces Guitar Leaves Leopard Motorbike
10 [ 500 10 [ 500 10 [ 500 10 [ 500 10 [ 500
79.8, 3.4 96.6,0.7 | 87.1,40 | 96.7,1.1 | 886,3.1 | 983,06 | 814,34 | 957,09 | 819,34 | 93.7,0.9
827,18 96, 0.6 82.9, 4.0 95.9, 0.8 846,20 | 98.3,0.9 | 70.9, 3.9 942,13 81.6,23 | 94.7,0.7
81.1, 3.3 87.1,19 70.0, 3.6 823,24 78.3, 1.8 85.0, 24 64.7, 2.9 74.7,1.6 64.7, 2.8 754,24
75.2, 2.3 834,23 69.2, 2.3 73.0, 2.7 725,34 83.6, 2.2 66.5, 2.3 75.5, 2.2 61.5, 2.4 73.3, 1.7
80.1, 3.5 86.1, 1.8 69.2, 3.8 80.9, 14 77.2, 2.3 85.8, 1.7 65.5, 2.7 78.2,1.2 64.9, 2.4 73.9, 2.5
72.2, 3.1 83.8, 25 71.3, 4.6 75.7, 2.2 71.2, 3.5 83.8,24 68.0, 4.1 78.0, 1.5 58.4, 2.1 71.3,1.8
72.3,1.9 824,19 72.6, 3.0 78.6, 2.4 67.4, 3.5 821,15 60.8, 1.8 67.6, 2.4 61.5, 2.2 70.4,1.4

Table 5.1: Results for the SVM learning algorithm. (TF: type offeature, NF: number of
features). For each experiment, the mean value and standardwiation of the EEP point of
the ROC curve for 10 repetitions. For every object category ahnumber of descriptor, the
best result is in bold face.

The classi cation results of the SVM learning algorithm are showin Figure 5.2, Table
5.1 and Appendix C. We observe in Figure 5.2 examples of the parhance evolution as a
function of the number of local descriptordN, in the case of rigid &irplanes) and articulated
(leopardg objects. For the remaining classes, the corresponding plots are Appendix C.
To illustrate a global view of the results, we show in Table 5.1 a p@al view of all SVM
experiments withN = 10 and N = 500. The best average performances are obtained by
the original HMAX, followed by HMAX computed at DoG (HMAX-DoG), SIFT- Gabor-NRl,
SIFT-NRI, SIFT-Gabor, SIFT, and CrossCorr.

In the case of the AdaBoost algorithm, we show in Table 5.2, Figu®3, and Appendix
C, the correspondent results. The ranking of classi ers of AdaBoo#& equal to SVM, but in
average, recognition rates of AdaBoost are below SVM.

2lmplementation provided by libsvm[13]
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Figure 5.2: Comparison of performance depending on the typadanumber of features rep-

resenting the images. The classi er used is SVM.

AdaBoost
Airplane Camel Car-side Car-rear
TF/NF 10 [ 500 10 [ 500 10 [ 500 10 [ 500

HMAX 81, 0.7 943,11 | 677,33 | 831,10 | 84.1,28 | 942,20 | 90.1,51 | 98.3,0.7

HMAX-DoG 778,36 | 932,13 | 639,45 | 79.1,18 | 855,55 | 96.6, 1.3 | 74.1,15.7 | 96.4, 1.3

SIFT-Gabor-NRI 719,21 | 829,16 | 60.1,25 | 649,24 | 739,25 | 69.1,22 | 726,32 | 835,21

SIFT-Gabor 714,33 | 827,14 | 575,34 | 633,18 | 676,49 | 68.6,28 | 628,35 | 77.0,20

SIFT-NRI 72.0,2.0 | 826,13 | 59.3,2.0 | 649,16 | 73.4,3.0 | 69.6,2.8 | 746,23 | 835,20

SIFT 69.1,2.7 | 815,18 | 56.1,3.3 | 64.2,21 | 67.1,40 | 65.7,44 | 614,34 | 778,19

Cross-corr 66.9,3.6 | 78.1,1.7 | 53.1,2.6 | 60.6,24 | 705,37 | 77.3,3.7 | 624,26 | 757,26

Faces Guitar Leaves Leopard Motorbike
10 [ 500 10 [ 500 10 [ 500 10 [ 500 10 [ 500

77.1, 4.7 949,11 | 83.7,7.1 | 96.6,1.0 | 83.1,6.2 | 97.7,0.7 | 76.8,2.8 | 85.6, 1.1 | 74.7,4.8 | 92.0, 1.7
74.4,6.1 957,12 | 78.0,6.9 | 92.7,15 | 76.0,4.6 | 97.0,0.9 | 70.2,55 | 83.1,2.0 | 752,3.7 | 93.4,0.9
80.9, 2.9 86.1,2.1 | 72.4,3.2 | 81.0,25 | 776,17 | 825,14 | 635,37 | 721,17 | 66.4,2.6 | 743,19
75.7, 2.9 84.0,1.9 | 731,17 | 724,21 | 719,24 | 80.5,2.2 | 66.0,1.8 | 70.7,2.3 | 614,2.7 | 73.3,1.8
80.2, 3.0 86.1,25 | 73.6,4.3 | 80.3,22 | 774,15 | 833,14 | 67.6,2.7 | 749,14 | 646,32 | 74.6,2.2
72.9,2.6 82.1,1.6 | 735,24 | 734,24 | 70.0,25 | 79.4,24 | 688,24 | 735,27 | 60.0,19 | 728,14
71.7, 3.3 81.1,16 | 755,28 | 77.2,28 | 66.3,47 | 78.0,1.9 | 60.2,1.3 | 624,27 | 59.6,3.2 | 68.7,1.1

Table 5.2: Results for the AdaBoost learning algorithm. (TF: tpe of feature, NF: number
of features). For each experiment, the mean value and standadeviation of the EEP point
of the ROC curve for 10 repetitions. For every object categorgnd number of descriptor,
the best result is in bold face.

Local descriptors can be clustered in three groups using the aage performance for both
SVM and AdaBoost: HMAX, SIFT-NRI, and SIFT. HMAX descriptors have the best perfor-
mance, followed by SIFT-NRI descriptors and SIFT descriptors. fie separation between the
groups depends on the learning algorithm, in the case of SVM tliéstance between groups
is larger than AdaBoost. AdaBoost groups are closer to each othemdafor some categories
(motorbikes airplanes and leopard9 all descriptors have practically the same performance.

We can observe in the plots that HMAX descriptors are clearly ahéan recognition per-
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Figure 5.3: Comparison of performance depending on the typadanumber of features rep-
resenting the images. The classi er used is Ada Boost.

formance with respect to the SIFT based descriptor. The very egnsive matching procedure
of HMAX is one of the reasons for the superior performance over t&¢FT descriptors. Con-
sidering an object component with siz&1 N and descriptor sizeS, the complexity of the
SIFT matching procedure isO(S), while in the case of HMAX (with the addition of bandsB
and orientationsT) the matching complexity isO(M N B T S). This very large di er-
ence in the matching complexity is re ected in the recognitin rate di erence. Additionally,
it may be the case that the adopted recognition architecturanspired in the original HMAX
work, in fact gives an advantage to HMAX descriptors. Anyway, it isnot surprising that
a methodology using a dense Gabor Iter-based representationda biologically motivated
recognition architecture based on a multi-scale multi-origation matching procedure pro-
vides state-of-the-art results. In fact, this supports the ideaf utilizing biological inspiration
in addressing the challenging problem of object recognition.

Considering the comparison between Gabor-SIFT and SIFT, we t&the better recogni-
tion rates of Gabor-SIFT. These results con rm the performane improvement of the Gabor-
based SIFT descriptor presented in Chapter 4, now applied in alfuecognition task.

5.3 Shape{and{appearance object recognition

Pictorial structures represent objects by a set o€ components (i.e. parts) and their relative

positions. This information is encoded into a grapls = (V; E) whereV = fvy; ;v Ve
is the set of vertices modeling the appearance of the di eremtbject components ance =
fe;:i;6;: ;&g is a set of edges representing the object shape, i.e. the geometela-

tionships between some of the vertices. The connectivity of thgraph will depend on the
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particular problem { full connectivity is not always necessar.

For our tests we will consider rigid, or almost rigid, objects. Inthis case an e cient
graph structure is given by a star model, where one of the nodesribted \landmark," is
connected to all other nodes, as illustrated in Figure 5.4. Farther types of objects, di erent
graph connectivity structures may be more suited, for instancarticulated objects are more
appropriately represented by tree-like models [47]. In a stgraph structure, the set of edges

20

a0t

60

landmark
m S
1

80

100

120+

20 40 60 80 100 120 140 160 180 200

Figure 5.4: Pictorial structure model

For learning and recognition, a graph is modeled in a probdlstic framework [47] that

(Xi;yi) as
p(Ljl; )/ p(ljL; )p(Lj ): (5.3)
Nodes are represented by the appearance of object parts. Thisusually expressed by
the distribution of local descriptor values on the componentsnage patches, encoded as a

random vectoru.,, c=1; ;C. Often, a Gaussian distribution is assumed and component
appearance is represented by its mean and covariance:

Ve =( uer uo): (5.4)

For almost rigid objects, shape is represented by the distributioof relative displacements
between parts. This is usually modeled by Gaussian distributionsf the nodex and y

3set of intensity values that visually represents the object
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coordinates referenced to the landmark location. Thus, the ahe model can be written as:
€= ( xe xi) 2 x10 Ve v 1o yi)i €=2;111;Cre1c 2 E; (5.5)

Both the appearance and shape models can be learned from a sdtaifiing data. In Figure
5.2 we show a graphical representation of the model.

To detect objects in new images, we adopt the probabilistic fraework of [47]. Objects are

lc = (X¢; Ye), given the model = (V;E) and the image datal. We consider that the like-
lihood of an object part at a certain image locatiorl,, can be measured by an observation
process that \matches" the local descriptor at that image locabn with the part's appearance
modelu.. With a Gaussian model for the appearance descriptors, the obsation model is:

P(ljlc;ue) IN ( ues ue): (5.6)

Assuming statistical independence between the individual objepart observation models,
which is a good approximation when the parts do not overlap, avcan write the following:

¢
p(1jL; )= p(jLv) 7l p(lle; uc): (5.7)

c=1

The prior p(Lj ) is captured by the Markov random eld with edge setE, expressed by

Q . Q : .
A wiveze PUalel ) g2 PO X )P(Y1; Vel )|

= ' - N - ; 5.8
Vo2V p(lcj )dEQVc 1 Vo2V p(ch )degvC 1 ( )

p(Lj )=

where degv, is the degree (depth) of vertex. in the graph de ned by E. If we do not have
preferences over the location of each part, the denominator Equation (5.8) is constant and
can be discarded (it is just a normalization factor). Thus replcing Equations (5.7) and (5.8)
in Equation (5.3), we obtain:

0 1
- W - Y . -
P(Ljl; )/ @  p(ljlc uc) P(X1; Xcj€1c) P(Y1; Yej€1c)A (5.9)

c=1 (vi;ve)2E

Computing the negative logarithm of Equation (5.9), the MAP stution can be obtained by
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the folowing minimization problem:
0 1
. X: . X . X .
L =argmin @ logp( jlc; uc) log p(X1; Xcj€1c) logp(ys: Yej€ie)A ;

c=1 (V1;vc2E) (v1:vc2E)

(5.10)
With Gaussian assumption on both the appearance and shape modelg probability density
functions involved in the previous expression are:

P(X1iX€w) IN ( xo xii %o x1) (5.11)
Pz Yeiee) /N (ye yis g, ) (5.12)
P(leiuc) IN (ucs we): (5.13)

By solving the Equation (5.10), we will obtain the most probal# object con guration L
in a new imagel .

5.3.1 Experiments with shape-and-appearance model

We aim to detect and locate faces in images using local-appaace models (adaptive Gabor
Iter-bank, SIFT, SIFT-Gabor, and HMAX) and the pictorial struc ture model. We use a
subset of the Caltech faces (100 images), background (100 inggdatabase images, and
the software provided at the \ICCV'05 Short Course"” [27]. In ths experiment background
images do not model a negative class, but they are utilized only test the object model in
images without faces. All images are subsampled to a 200x132 si¥¢e select 10% of the
face images to learn the local descriptor model (;; ;) and the pictorial structure model
( x xu fj ' Vi yis 31 y:)» With C =5 parts. The covariance matrices of the descriptors
are assumed diagonal. In the case of SIFT descriptors, it is necegstr reduce from 128
to 32 dimensions in order to compute covariance matrices elents. We recognize objects in
the remaining 90% of face image set and background images.

The model learning (i.e. estimation) is a supervised proceduine which the user clicks
in the image to select and locate face parts. We model ve partseft and right eye, nose
center, and left and right mouth corners. Model classi cationi(e. recognition) computes the
most probable location of the object in novel imaged ( in Equation (5.10)).

During classi cation we use the set-up presented in Figure 5.5. ®hmodules are: (i)
Salient point detection, (ii) local descriptor computation and (iii) face recognition. The
salient point detection module is equal to the one used in Chagt2 (Section 2.7.2), composed
by: (i) initial interest point selection, provided by the locd maxima of the Laplacian of
Gaussian response applied at several scales in the image, and (lig&@®n of candidates for
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Figure 5.5: Set-up of the face recognition experiments

Figure 5.6: Face detection samples: 3 hits and 1 miss (right).

facial components using the saliency mod&M., based on the wavelength signature.

The second module of the set-up is the local descriptor compuiian. We compute several
object component descriptors in order to compare the perfoances of: (i) the adaptive Gabor
Iter-based presented in Chapter 3, (ii) the original SIFT desdptor, (iii) the Gabor-based
SIFT descriptor presented in Chapter 4, (iv) HMAX, and (v) cross caelation. The last
module is the object model recognition, using the pictorial sicture explained in Section
5.3.

Evaluation criteria comprises object detection and locatim For object detection we
compute the Receiver Operator Characteristic (ROC) curve, arying the threshold in L
value. For object location we compute precisioms: recall curve, varying the ratio between
the intersection of ground truth and detected bounding boxeand the union of the bounding
boxes. The quantitative criterion for comparing two descriptrs is the equal-error-point
(EEP) and area of the ROC curve (detection) and precisioms: recall curve (location).
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In Table 5.3 we see the EEP results for face detection and lo@ation. We also consider
a variant of the set-up in Figure 5.5, by removing the top-dowrsaliency model, to see the
in uence in the recognition rate.

ROC Recall-precision
EEP (%) | Area(%) | EEP (%) | Area(%) Complexity
82.1 91.3 79.9 82.2 saliency
SIFT 86.3 934 80.3 81.2 no saliency O(S)
83.1 91.7 80.5 84.1 saliency
SIFT-Gabor 85.3 94.9 81.7 831 | no saliency| 0>
89 94.8 84.9 85.5 saliency
HMAX 90.8 95.6 86 85.8 | no saliency O(MNBTS)
Adaptive Gabor 82.1 91.5 56.7 57.8 saliency o(S)
Cross correlation 80 70.5 38.1 33.7 saliency O(MN)

Table 5.3: Face recognition using pictorial structures [47].Equal-error-point (EEP) and
area of the ROC curve (detection) and precisions: recall curve (location), along with the
computational complexity of matching.

The very expensive matching procedure of HMAX is one of the reasofor the superior
performance over the SIFT descriptors. To illustrate the di eence in the complexity between
descriptors, let us consider an object component with sik¢ N and descriptor sizeS. Then,
the complexity of SIFT matching procedure iSO(S), while in the case of HMAX (with the
addition of bandsB and orientationsT) the matching complexityisO(M N B T S)
and for normalized cross-correlation it iO(M  N).

Considering the matching complexity and performance, we seat SIFT has a very good
balance due to the e cient matching procedure and good detéion rates. By contrast, the
adaptive Gabor Iter descriptor of Chapter 3 has an e cient matching procedure, having a
good face detection rate, but the localization rate is just atwve from chance. In the bottom
line we see the HMAX descriptor, having good performance in detem and localization,
but with a very high computational complexity to match descrptors. These results show the
suitability of dense Gabor lIter-based descriptors in challerigg recognition problems.

Using object detection and localization criteria, we see thate top three descriptors are:
(i) HMAX, (ii) SIFT-Gabor, and (iii) SIFT. These descriptors are able to recognize faces
correctly in cluttered environments. Figure 5.6 shows examgs of three correct detections
and one wrong detection when using HMAX.

The addition of the saliency module has two e ects: (i) a drop imaverage of 3.1% in
the detection rate, and (ii) an increase of 1.13% in the locahtion rate. Nevertheless, the
experiments with saliency reduce in average, 65% of the cont@iions during recognition.
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These results con rm the advantages of the saliency model fouma Chapters 2 and 3.

5.4 Summary and conclusions

We present exhaustive experiments in component-based objeetognition, using two kinds
of models: (i) an appearance-only-model, and (ii) a shape-aagpearance model. The
appearance-only model was utilized to detect object categes in a binary class problem,
in which the objective is to decide if there is an object of thelass modeled in new images.
We apply the shape-and-appearance model in a face detectiorddocalization problem. The
purpose of the amount and variety of experiments done is to duate in object recognition
in cluttered scenes the capabilities of:

the top-down saliency model provided by the wavelength signate. This model brings
e ciency and improves the precision rate, reducing up to 65%he computations of the
subsequent steps of object recogntion.

the Gabor-based SIFT descriptor, improving the recognitionates when compared to
the original SIFT.

the SIFT descriptor, having a very good balance between comyational complexity
during matching and good detection and localization ratesf@bjects in cluttered data
sets.

the HMAX descriptor, being able to discriminate categories andecognize faces cor-
rectly, showing that a very dense Gabor-based component destiop is feasible, but
at the expense of a matching procedure with very high computanal complexity.



Chapter 6
Conclusions and future work

In this thesis we addressed the problem of component-based olbbjecognition using biolog-
ically motivated Gabor Iters for interest point detection and representing image neighbor-
hoods (image descriptors). The visual cortex of the monkey bracontains layers of cortical
cells resembling Gabor functions that serve as a feature exttaon front{end for subsequent
visual processing tasks. Similarly to Gabor functions, these cetiee able to analyze low-level
texture properties of the images and can be tuned for di eréntypes of structures like edges,
bars and gratings, having di erent scales, orientations and spial frequencies.

Most of the existing works utilizing Gabor functions do not prperly exploit the full
richness of their parameterization, limiting their applicéion to the analysis of orientation
and scale \degrees of freedom." Instead we have explored theoMhrange of parameters
of the Gabor functions and show that a proper selection of thewalues is advantageous in
four important steps of the object recognition problem: (i) he selection interest points, (ii)
the computation of the intrinsic scale of image regions, (iii)lte design of robust local image
descriptors, and (iv) the representation of object categoriesWe have executed extensive
tests comparing the performance of our models with other stat#-the-art methods in all
stages of the object recognition architecture.

First, we proposed a coarse top-dowimterest point selection method able to intro-
duce object related information very early in the recognitin process and thus signi cantly
reduce the overall computational cost. By contrast, most statef-the-art object recognition
methods consider top-down information only in the nal recogition decision. We introduced
an additional intermediate step in the recognition architetre in order to Iter bottom-up
candidates that are very di erent from the model, thus exclding them from costly subsequent
recognition steps. The proposed method consists in modeling tloeal texture properties of
object parts by means of the analysis of isotropic patterns of drent wavelengths, invariant
to position, scale and orientation. This is achieved by comping a wavelength pro le that
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collects the response of multiple Gabor Iters tuned to di erat scales and orientations at
every wavelength. We derived a new lter kernel able to compe the wavelength pro le of
an image region without having to actually perform multipleGabor lIter convolutions. We

showed the ability of such a top-down saliency procedure to sigrantly reduce the com-
putations required in object detection in cluttered scenes, ith very few rejections of true
positives.

Secondly, we proposed a new method to compute tirinsic scale of an interest point.
This is obtained by using the unique properties of the wavelgth pro le function used to build
the top-down saliency function. The method proposed is able wompute the scaling factor
between an image region and scaled versions of it, even in caséer& standard methods,
such as scale-normalized Laplacian of Gaussian, fail: (i) it idle to correctly compute the
intrinsic scale in ridge-like structures, and (ii) it presents vy low variance in its output for
regions with very similar visual appearance. These advantagakow computing the intrinsic
scale in a broader set of textured regions than standard methods.

Regarding the description of image neighborhoods we have smtered Iter-based and
histogram-based methods. One of the best known state-of-the-artethods in Iter-based
methods is the HMAX, which serves as a baseline for comparison. Teeosome the extreme
computational load of HMAX or similar methods, we presented an atnative method that
relies on a local descriptor vector composed of a limited numba Gabor responses computed
with the selection of best frequencies (wavelength inverse) dirscales. Instead of using a
Gabor lter bank with a xed set of parameters, this approach peforms a data driven
automatic selection of the most informative Gabor parametersThis is achieved by looking for
local extrema of the Extended Information Diagram (EID) furction of each object component.
An additional step allows the representation of components in way invariant to scale and
orientation. We presented experimental results where we hagseaccessfully recognized object
components using either: (i) the adaptive Gabor local desctqr model only or (ii) both
the adaptive Gabor local descriptor model and the top-down sehcy model to successfully
detect and locate facial components.

We also exploited the paradigm of Gabor parameter selectionrfonproving well-known
state-of-the-art histogram-based descriptors. We presented a thed to select the best scale
to compute rst order image derivatives in order to improve SFT local descriptor distinctive-
ness. The parameter selection procedure looks for local exti@of odd Gabor Iter responses,
providing the best Iter width to compute the image derivatives in scale-normalized regions.
In order to evaluate the improvement over the original SIFT dscriptor, we use the compari-
son framework introduced by Mikolajczyk and Schmid [83]. Theesults obtained have shown
that the matching capabilities of SIFT are improved on averge.
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Finally, we evaluated the proposed approaches f@utomatic selectionof Gabor Iter
parameters by applying them in a full object recognition sefa We evaluated their perfor-
mance in comparison to other state-of-the-art approaches imo important classes of object
recognition problems: appearance-only and shape-and-appaae.

In a rst group of tests we applied an appearance-only object nael that disregards pose
between local descriptors. The model is applied to the recogjon of several object categories
in order to compare the performance of various local descrggs. Results from this group
of tests have shown that our proposed improvement of the SIFT degmtor surpasses the
original SIFT, using the recognition rate as performance d¢drion. In a second group of
tests, we applied a shape-and-appearance object model to eatduthe performance of: (i)
the top-down saliency model from the wavelength signature,iYithe adaptive Gabor lIter
bank, and (iii) the Gabor-based SIFT descriptor. The results oboth groups of experiments
in cluttered images, presented in Chapter 5, reinforced the wdusions obtained previously
in Chapters 2-4:

The top-down saliency model with wavelength signature is abte signi cantly reduce
the computational complexity of the object component matdmg, giving rise to very
few rejections of the actual object components.

The adaptive Gabor Iter bank is able to match object componets with a performance
comparable to the HMAX and with signi cantly smaller computational cost. The rate
of false positives may become important for complex, highlyuttered images.

The Gabor-based SIFT descriptor outperforms the original SIF local descriptor in
terms of recognition rate, at the cost of a small addition to the&eomputational e ort.

Another important conclusion of the experimental work is releed to the performance of
the HMAX method in category recognition. Although this method vas not proposed by us,
it is a nice example of the utilization of biologically motiated principles. The inspiration by
the primate brain is twofold: the use of Gabor functions as lowevel feature and a matching
procedure inspired in the structure of the visual cortex.

In summary, we have shown the applicability of Gabor lters in seeral steps of the object
recognition process, from salient point detection to object egponent description. Results
are comparable to current state-of-the-art, but three impdant points should be noticed and
distinguished from other works:

The early introduction of coarse appearance models in the mgnition process allows
iImportant computational savings.
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Purposeful selection of the Gabor function parameters has pen to be a successful
technique, overcoming xed Gabor Iter approaches.

The promising results obtained with the application of bioloal principles in object
recognition, in particular the performance of the HMAX method encourage further in-
vestigations in Gabor-based approaches, which may lead to nbugethods that surpass
the current state-of-the-art.

6.1 Future work

One of the main results of this thesis is the derivation of a sahiey function based on the
scale and rotation invariance texture properties of the Galvdunction. The successful results
provided by the top-down saliency operator encourage the aljgation of the wavelength sig-
nature operator in other image domains. The wavelength signat extracts the contribution
of several textures, a property that is suitable to detect abnonal textures and perform dense
frequency estimation in images.

The successful recognition rates provided by the HMAX-based modelosh that features
based on Gabor responses are suitable to detect objects in imagesppropriate sampling
of the responses and matching procedures are designed. The rhigilg procedure of the
adaptive Gabor Iter descriptors provides, however, a high nmber of false positives, mainly
due to the local match in the scale dimension and the sparseness bé trepresentation.
Future approaches should consider both the adaptive nature tie Gabor lters presented
in this thesis, along with a more dense representation, and an edstive matching criterion
to obtain high numbers in the true positive rate and very low nmbers in the false negative
rate.

One of the main contributions of this thesis is the introducton of a top-down module
in the early stages of object recognition, demonstrating the @ency improvements in vi-
sual search tasks. The next step to boost the recognition process I tconsideration of
hierarchical features in the initial steps of the object reagnition architecture. Common ap-
proaches to component-based recognition consider every partlependently during interest
point selection and description. By contrast, it seems that humes learn visual features in a
hierarchical manner, by encoding a sort of superfeatures thaan be explained in terms of
smaller subfeatures [2].

Experiments with human subjects have shown that adults and iahts are able to extract
conditional probability statistics between particular elenents in speci ¢ spatial con gura-
tions [15]. The experimental evidence also suggests that therhan visual system eliminates
(reduces the weight of) features embedded in larger featsrebut only if they never appear
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outside of the larger features [34]. This can be seen as a dimenality reduction procedure.
Furthermore, an open question in human vision research is thengiruction process of these
superfeatures. The experiments presented in [34] suggest thaethoundaries between super-
features contain low-level features with low predictive peer (i.e. we can not rely on them
to predict the appearance of other features).

Recent works in computer vision [32, 31] have addressed the caustion of hierarchies
of low-level features, but the construction process relies ohd \parts composed by parts”
approach, instead of the biologically motivated constructio based on the feature predic-
tive power. Thus, the addition of a hierarchical feature constiction module to the object
recognition architecture will bring more exibility and e ciency to the state-of-the-art object
models.
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Appendix A

Gabor wavelength saliency function

A.1 Gabor wavelength saliency kernel

The closed form expression of Equation (2.10) is:

Jo(2 r= =2 _
wy(r; ) = of r) (erf(3p 2r=") erf(pré—))+
1 2_ 1812 2 22 p_- . _ 18=
2 18 T 44e2° 7 2 26 T Ferf —
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27I’p— 2 = Zirp_ 8r=
e 2erf 5 e 2 erf —4= P2 4 +18r=
+ 2 2e erf —
r r 3 2
Zil’p_ =
e 2 erf +3 rz
+
r
wherer = P

x2 + y2, erf(z) is the error function, Jo(z) is the Bessel function of rst kind
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Appendix B

Image matching results

This appendix contains the matching results of the image ndigorhood matching experiment
[83] to evaluate comprehensively the improvement in the SIF@escriptor [70] explained in
Chapter 4.
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Figure B.1: recall vs. 1 precision curves of Hessian-a ne regions matched using textured
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Figure B.9: recall vs. 1 precision curves of Hessian-a ne regions matched using structured
images in Figure B.9(d), related by a JPEG transformation.
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Figure B.10:recall vs. 1 precision curves of Hessian-a ne regions matched using structured
images in Figure B.10(d), related by an illumination transfamation.
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Appendix C

Object category results

This appendix contains the object recognition results of théllowing categories: camel, car
(side view), car (rear view), face, guitar, leaves and motoies. These experiments evaluate
several local descriptors using an appearance-only object neb@Chapter 5).
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Cars (side view) - SVM
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Figure C.2: Recognition performance of the car category (®€dview), for several local de-
scriptors.
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Cars (rear view) - SVM
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Figure C.3: Recognition performance of the car category @eview), for several local de-
scriptors.
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Figure C.4: Recognition performance of the face categorgrfseveral local descriptors.



124 APPENDIX C. OBJECT CATEGORY RESULTS

Guitars - SVM
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Figure C.5: Recognition performance of the guitar categqrfor several local descriptors.
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Figure C.6: Recognition performance of the leaves categpfgr several local descriptors.
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