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Abstract

The primate visual system is extremely successful and e�cient in the challenging task of

recognizing objects in complex scenes. A key component of the primate visual system is

a massive utilization of neuronal circuits located in the low-level visual cortex areas, with

responses similar to Gabor functions. These functions have important properties for image

analysis such as selectivity to orientation, scale and frequency and being specially suited to

characterize image texture.

In this thesis we explore the properties of Gabor functions inthe context of component-

based object recognition. Current component-based object recognition approaches represent

objects as constellation of sub-parts, dividing the problem inthree stages: interest region

selection, image region description and, eventually, the recognition step. We introduce novel

methods using Gabor �lters for interest point selection and image region description. Per-

formance is evaluated with state-of-the-art object recognition architectures.

Regarding the selection of interest points, we de�ne a new top-down saliency function. We

encode the appearance of object components in terms of Gabor�lter responses to build the

saliency function. This saliency function computes a wavelength pro�le for every component,

being e�ective in �ltering out clutter and noisy features. The aim of this function is to reduce

the number of candidates for posterior analysis, but maintaining high recall rates.

Once the points of interest have been detected, we propose region descriptors with rich

and e�cient matching representations that explore the full set of parameters of Gabor �lters.

Local maxima of the �lter energy response is the criterion to de�ne two types of descriptors:

a feature vector formed by Gabor �lter responses that are chosenspeci�cally for each object

component and an alternative way to compute the SIFT descriptor.

We perform extensive tests in real scenarios, to show experimentally that our models for

interest point selection and local descriptor computation arewell suited for component-based

object recognition. Results show that approaches based on Gabor �lter responses outperform

state-of-the-art approaches in several aspects of the object recognition problem.

Keywords: object recognition, Gabor �lters, top-down saliency, component recognition,

local descriptor, parameter selection
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Resumo

O sistema visual dos primatas desempenha, com sucesso e rapidamente, tarefas complexas

como o reconhecimento de milhares de objetos. Uma componente chave do sistema visual

dos primatas �e a utiliza�c~ao maci�ca de circuitos neuronais localizados em �areas corticais de

baixo n��vel, com respostas semelhantes �as fun�c~oes de Gabor. As fun�c~oes de Gabor têm

propriedades importantes na an�alise de imagem, devido �a suaselectividade �a orienta�c~ao,

escala, e frequência, sendo particularmente adequadas �a caracteriza�c~ao de texturas.

Nesta tese iremos utilizar as propriedades das fun�c~oes de Gabor para abordar o problema

do reconhecimento de objectos baseado em componentes. Os m�etodos cl�assicos para abordar

este problema representam objectos como constela�c~oes de componentes e separam o problema

em três fases: selec�c~ao das regi~oes de interesse, descri�c~aodas regi~oes de interesse, e �nalmente

a fase de reconhecimento. Nesta tese introduzimos m�etodos inovadores para os problemas da

selec�c~ao de pontos de interesse e a descri�c~ao das regi~oes daimagem.

Relativamente �a selec�c~ao de pontos de interesse, de�nimos uma nova fun�c~ao de saliência

para cada componente de um objecto. Prop~oe-se uma representa�c~ao da aparência dos com-

ponentes dos objectos baseada na resposta de �ltros de Gabor para calcular a fun�c~ao de

saliência. Estas fun�c~oes discriminativas calculam um per�l do comprimento de onda para

cada componente, e podem ser usadas para reduzir o efeito do ru��do ou objectos estran-

hos, e para reduzir o n�umero de candidatos, sem rejeitar os componentes do objecto que se

pretendem reconhecer.

Estando os pontos de interesse detectados, a fase seguinte �e o c�alculo de descritores para

cada regi~ao.�E explorada a selec�c~ao autom�atica dos parâmetros de �ltros de Gabor, usando

o crit�erio de m�aximos locais da resposta da energia do �ltro.Este crit�erio �e aplicado, a �m

de�nir dois tipos de descritores: (i) Um vector de caracter��sticas composto pelas respostas

de �ltros de Gabor, escolhidos especi�camente para cada componente do objecto, e (ii) uma

maneira alternativa para calcular o descritor SIFT.

S~ao feitas experiências de reconhecimento de objectos emcen�arios reais, que demonstram

a boa aplicabilidade dos modelos propostos nesta tese para a selec�c~ao de pontos de interesse

e c�alculo de descritores locais. Os resultados demonstram um melhor desempenho das abor-
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dagens baseadas nos �ltros de Gabor quando comparadas com m�etodos dentro do estado da

arte no reconhecimento de objectos.

Palavras chave: : Reconhecimento de objectos, �ltros de Gabor, saliência, reconheci-

mento de componentes de objectos, descritor local, selec�c~aode parâmetros
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Chapter 1

Introduction

The human visual system has the astonishing capability of recognizing and categorizing

thousands of objects in real time using just 2D image information [8]. This outstanding per-

formance is likely to result mainly from the union of two capabilities: (i) parallel processing of

a huge amount of low-level features, and (ii) developmental cognition processes. By contrast,

the performance of computer vision approaches for object recognition is still not comparable

with their biological analogies in these respects: real-time response, level of performance,

and the ability to handle thousands of objects. Nevertheless, recent work in visual object

recognition has made signi�cant advances towards these goals.

Initial approaches to object recognition from images [100,106, 92] proposed the use of

appearance to model the image of an object as a whole. While this might seem a good idea to

solve the object recognition problem, it is very susceptible tobackground clutter and object

occlusions. These reasons led researchers to propose alternativeapproaches where appearance

is computed only at selected (local) regions of the image. This so-called \component-based

object recognition" approach has delivered various successful results [69, 107, 81, 121]. All

these works exploit the idea of splitting the object in a group of components. Using this

approach, the usual procedure consists of two steps: (i) selectingobject components and

representing the appearance of each individual component and (ii) combining the appearance

models of multiple object parts to build the overall object model. Once the model is built,

we are able to recognize objects by matching the model againstnovel images.

In this thesis we adopt the component-based approach for object recognition. We will

use local �lters inspired by the human visual system (Gabor functions) [20] to propose new

methods in object component selection and local appearance representation.

1
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1.1 What is component-based object recognition?

In order to illustrate the idea, Figure 1.1 shows some snapshots ofthe component-based

object recognition steps. To recognize the woman in the Mona Lisa1 oil painting, we would

need to build a model, as follows:

1. Select the woman's most relevant points (i.e. salient points, interest points), plotted in

red in the second image of Figure 1.1.

2. Select a neighborhood around each interest point, in orderto de�ne object components.

We observe in the third image of Figure 1.1 shows the object components selected.

Then, represent the appearance of each component, using a local descriptor (i.e. feature

vector).

3. Build the object model by collecting the appearances of the components (parts). In

addition to appearances, the model can use shape information (relative position be-

tween components). Appearance-only information allows the detection of the pres-

ence/absence of the object, but it is very di�cult to retrieve its location unless shape

information is also considered. In the rightmost image of Figure 1.1 we sketch Mona

Lisa's model, which includes the individual components and spatial con�guration of

the parts, represented with lines between local regions.

Figure 1.1: Component-based object recognition illustration

Considering the steps described, we need to answer the followingquestions:

� Which points in the object should be used (interest point selection)?

� How to select the interest point's neighborhood and model its appearance?

1by the Colombian artist Fernando Botero, 1977
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� How to model the entire object, either considering the appearances alone or a joint

description of shape and appearances?

We shall make a survey of the state of the art for these problems, referring to recent

approaches that have had a signi�cant impact in the computer vision �eld. First, we will look

at the interest point selection, followed by the local appearance representation approaches

and the global modeling frameworks for component-based object recognition.

1.1.1 Interest point selection

Macaques and humans have an impressive performance in real time interpretation of complex

scenes. It seems that intermediate and high level processes in thevisual system select just

a few regions in the visual �eld to perform further processing, thus reducing the complexity

of scene analysis. This interest point selection, often referredto as \salient point detection,"

can be driven in a bottom-up or top-down fashion [54].

Bottom-up approaches for saliency search for variability of low-level image attributes, such

as contrast, color and texture, in order to �nd salient points. Thus, bottom-up approaches

can be seen as \image-oriented" processes. In di�erence, top-down approaches for saliency

search for regions in the images that are attached to a speci�c target object. For instance,

when searching for faces in images we can guide the process, de�ning a saliency function

speci�c to eye detection. Thus, top-down approaches can be labeled as \object-oriented"

processes.

Although the presence of saliency mechanisms in the human visual system is clear, quan-

titative measures of saliency for di�erent tasks remain unclear. One can design various kinds

of saliency functions, based on what we want to \see." For example, if we want to have good

regions for tracking we can try to minimize the matching error [81, 116], whilst if we want

to �nd blobs at several scales, searching for local maxima of the Laplacian of Gaussian [69]

is more appropriate. Saliency functions have been proposed to detect image features like

corners [44], edges [11], ridges [66], and textured regions[50]. Other examples of saliency

functions are local maxima of scale-Shannon entropy [51], and the \conspicuity map" [49] that

combines color, intensity and orientation. All these examplesof saliency functions exploit

the bottom-up paradigm to select image interest points.

Although recent works consider mostly bottom-up saliency mechanisms, there is evidence

of the interaction between bottom-up and top-down processes in nearly every search model in

the human visual system [14]. The visual search of object components during the recognition

process can be boosted with some prior (top-down) information about the regions we are

searching. A recent work considers top-down saliency, de�ningthe discriminant saliency
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[39] concept, where salient points are extracted from the image features that enable best

discrimination between one class (object) versus all the otherclasses. Thus, we have groups

of salient points that are speci�c for each object.

Salient point detection is followed by appearance representation, also referred to as \local

descriptor computation" in the computer vision literature.

1.1.2 Local image descriptors

Local image descriptors are vectors of features that characterize the vicinity of particular

points of the image. Such descriptors are used to distinguish between di�erent image patterns

and (ideally) should be invariant with respect to a set of image transformations. Several types

of local descriptors have been proposed in the literature: gradient magnitude and orientation

maps [69], Gaussian derivatives [107, 81], rectangular features [118], di�erential invariants

[57], steerable �lters [36], Gabor features [113, 59, 88], cortex-like (HMAX-based) features

[103], and the Scale Invariant Feature Transform (SIFT) [69], amongst others.

Local descriptors represent meaningful information of the neighborhood of an interest

point, where \meaningful" varies according to the goals. Forobject recognition, the most

critical requirement is that of allowing correct matches between corresponding regions of

object images, irrespective of the transformations applied tothe original image (e.g. a�ne,

illumination, compression). In order to handle invariance toimage transformations, three

main approaches have been widely adopted: (i) constructing adescriptor using features

whose response is invariant to image transformations [59, 107],(ii) conceiving interest point

detectors that provide additional parameters (e.g. a�ne) that can be utilized to normalize

image regions [81, 70, 83] and (iii) performing an exhaustivematching that considers a set of

possible transformations [116, 109]. The �rst approach corresponds to a truly invariant local

descriptor, the second approach assigns the invariance problemto the salient point detection,

and the third approach assigns invariance to the matching procedure.

In terms of the operator applied to compute the representation, there are two main groups

of descriptors:�lter-based [36, 57, 113, 59, 103] andhistogram-baseddescriptors [69, 83, 4, 55].

Filter-based approaches compute responses of operators (e.g.Gaussian derivatives, Gabor

�lters, HMAX, di�erential invariants) in order to build the local descriptors. Histogram-based

operators (e.g. SIFT, shape context) compute spatial statistics of gradient responses to build

the descriptors. Although histogram-based descriptors have beenreported to outperform

the �lter-based counterparts in a matching experiment [83],the HMAX descriptor based on

Gabor �lter bank responses has been recently successfully used in recognition problems [109].

Another aspect that may have an important impact in the required computational and

memory resources is the sampling method applied to compute thelocal descriptor. Existing
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works have adopted either dense or sparse sampling approaches. Dense descriptors [68, 109]

sample exhaustively the parameters of the operator used (e.g. scale, orientation) and pixels

in the image neighbourhood under consideration. By contrast,sparse representations [113,

107, 47, 70] select particular parameter values and pixels (usually only at the interest point)

to sample the response of the operators. The sampling criterion chosen is directly related to

the descriptor size, a critical aspect in storage capabilities and matching time requirements.

We have seen how to detect salient points in an image, which are putative candidates

for object components. Then, we described each region around the detected points for later

recognition. It remains to see how to combine the descriptors of detected salient points, i.e.

candidates for components, in order to recognize objects in images.

1.1.3 Models for object recognition

Component-based object models aim to combine the appearanceof several components in

order to represent each object as an entity. Probabilistic models for object recognition are

the state-of-the-art techniques to tackle object detectionand localization. The probabilistic

formulation has an important property, the compatibility with machine learning algorithms.

That property allows to handle object recognition in two stages: model estimation (i.e. train-

ing, learning) and model classi�cation (i.e. recognition). The goal of the model estimation

process is to compute the parameters' values that describes relevant information about the

object class. Then, we match the model in new images, classifying possible new model

instances as positive or negative.

Several probabilistic models have been proposed in the literature [19, 96, 10, 114, 70].

While some of these models use the local descriptors exclusively (i.e. appearance-only),

there are some others that explicitly incorporate the pose between object components (i.e.

shape-and-appearance). Intuitively, one cannot expect appearance information alone to allow

the correct detection of objects. However, several works have reported very good performance

[119, 19, 96, 109] using appearance-only models in clutteredimages, due to the representation

of the object and its \context" (background). The advantages of these methods include

robustness to occlusions and non-rigid transformations of the object. A major drawback of

appearance-only approaches is the di�culty of object localization in the image, although for

some classes it is possible to estimate their positions with additional assumptions.

Shape-and-appearance models were originally proposed by Fischler et. al. as the \parts

and structure model" [33]. The object consists of a set of templates (i.e. parts, compo-

nents) arranged in some geometric con�guration (i.e. structure, shape). Recent works have

adopted this idea, considering several aspects of this approach, for example the constellation

model [10], e�cient matching with pictorial structures [47], and probabilistic Hough voting
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[62], amongst others. Shape-and-appearance models are in general less robust to non-rigid

transformations, but the shape is able to provide an estimate of the location of the object.

Regarding the number of objects that the model is able to consider in each class, the

models are divided in two groups: (i) single object models, and (ii) category object models.

Single object recognition approaches [86, 107, 70, 4] are designed for recognizing a single

object instance, having very little or no intra-class variability. Instead, approaches for object

categorization [47, 30, 121, 28] aim at grouping all similar objects in the same class and must

handle larger in-class variability.

Additionally, the model estimation process can be carried out either in a supervised or in

an unsupervised manner, depending on the amount of information available to the algorithm.

In the case of single object recognition, a single sample can be used to compute the model,

but for object categorization a large amount of segmented and/or labeled images is usually

needed. There are several supervised approaches for object categorization that attain good

performance [10, 95, 79, 121] at the cost of requiring a huge number of samples. Recently,

weakly supervised approaches were proposed, where only image labeling is needed [30, 17].

Completely unsupervised approaches to image category detection [112, 9, 29, 25, 26] are

preferable because they avoid both image segmentation and labeling.

Interest point
detection

Local
descriptor

Object
model

Figure 1.2: Main steps of component-based object recognition.

Figure 1.2 shows the steps required for component-based objectrecognition approaches

that we have described. The main advantages of these approaches are: (i) invariance to rigid
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image transformations [69, 29, 12], (ii) tolerance to objects occlusion in the image [69, 29],

(iii) some degree of robustness to non-rigid image transformations [52, 81, 47, 29], and (iv)

excellent performance in single-object recognition [69, 81] and categorization [29, 25, 69].

This thesis proposes ideas, methods and techniques for interestpoint detection and com-

putation of local descriptors, as will be detailed in the next sections.

1.2 Approach of this thesis

In this thesis we focus on models and techniques for interest point detection and local de-

scriptor computation for component-based object recognition that are largely based on Gabor

�lters. The choice of Gabor functions to perform computer vision and image processing tasks

has been motivated by biological �ndings in the low-level areas of the primate visual cortex

[20] and more recently by simulations of the primate/human visual system [49, 23].

A 2D Gabor function is formed by the product of a 2D Gaussian and acomplex expo-

nential function. Gabor functions act as low-level, oriented edge and texture discriminators

that are sensitive to di�erent frequencies and scale information. In an information theoretical

sense, Gabor [38] has discovered that Gaussian-modulated complex exponentials provide the

best trade-o� between spatial and frequency resolution, allowing simultaneously good spatial

localization and description of signal structures. Other interesting properties of the Gabor

response are the invariance to changes in image contrast and robustness with respect to small

translations of the image pattern in consideration.

Gabor �lters have been widely used in numerous applications such as image compression

[101], optical ow computation [45], disparity estimation [94, 99], texture segmentation [50,

24], human iris recognition [22], face recognition [122, 75, 68], and object recognition [5, 109].

Finally, the recent proposal of fast methods for Gabor �ltering [7, 6] have further enhanced

the feasibility of Gabor based recognition.

In this thesis, we use Gabor functions to build models for component-based object recog-

nition for two main reasons:

� The �rst two steps of component-based object recognition (salient point detection and

local descriptor computation) are low-level processes, where an analogy between Gabor

�lters and the low-level areas of the primate visual system can be established.

� Gabor �lters have several degrees of freedom (i.e. function parameters) that have not

been fully explored yet and can lead to simpler or more powerful models.

In the next sections we explain briey our approaches for interest point selection and local

descriptor computation using Gabor �lters. We propose models todetect and describe object



8 CHAPTER 1. INTRODUCTION

components using Gabor �lters. Then, we utilize these models toperform component-based

object recognition.

1.2.1 Interest point selection

We start from the salient point detection, a problem that has been primarily addressed in a

bottom-up way [69, 116, 81, 49, 52]. However, when searching the image for speci�c objects, it

is convenient to incorporate object-related knowledge as early as possible in the recognition

process, either to reduce the amount of possible candidates or toimprove the recognition

performance [39].

This thesis proposes an approach where saliency computation isbiased to favor object

related points, eliminating bottom-up salient points very di�erent from the object related

points and having very few misses of object points. This type of top-down saliency works

as a re�nement stage after the bottom-up interest point selection. Therefore, we manage

to improve the e�ciency in the subsequent steps of recognition by reducing the number of

bottom-up interest point candidates for matching an object component.

The top-down saliency operator relies on the Gabor wavelength parameter that captures

the texture information of an object's interest point. For every wavelength, the operator

sums the contribution of all Gabor �lter responses that were computed at that particular

wavelength. Thus, the operator encodes the \wavelength signature" of an interest point, a

coarse representation of an object component. The addition ofthe saliency model during the

early stages of object recognition increases the e�ciency of the entire process, reducing the

number of component candidates for matching.

Additionally, the saliency operator is able to estimate the intrinsic scale of object com-

ponents. The method proposed computes a very good approximation of the scaling factor

between regions, having properties similar to those of the Laplacian of Gaussian, with added

versatility to compute the intrinsic scale in ridge features.

The addition of the top-down saliency module modi�es the architecture scheme during

recognition, as can be seen in Figure 1.3.

1.2.2 Local descriptors

After detecting salient points, there is the problem of designing suitable local image descrip-

tions. This aspect has been addressed in several recent works [69,107, 81, 121, 4, 36], shifting

the global matching problem to local matching.

We exploit the Gabor �lter properties to de�ne a �lter-based local descriptor and a

histogram-based descriptor. In both descriptors we explore theautomatic parameter selection
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Bottom-up salient
point detection

Top-down salient
point detection

Local
descriptor

Object
model

Interest point
selection

Figure 1.3: Architecture of our component-based object recognition approach

approach. The idea is to select the most adequate Gabor �lters, using their response to de�ne

several criteria.

Filter-based local descriptor

The design of a local descriptor must choose the size of a feature vector in accordance to

the requirements of a particular recognition problem. Densedescriptors may lead to very

large feature vectors, possibly leading to prohibitive computational and storage needs. The

HMAX [103] is an example of a state-of-the-art descriptor of thistype, composed by a set of

Gabor �lter-bank responses computed at every pixel in a neighborhood across an exhaustive

set of scales and orientations.

Instead, sparse descriptors sample the image responses computed inthe object component

image in a particular way, usually choosing responses only at theinterest point. Sparse

descriptors have shown good recognition rates in several applications [113, 122, 5, 47] along

with very e�cient matching methods. These properties lead us to adopt the sparse sampling

approach for the Gabor �lter-based descriptor.

A widely used, straightforward approach is to build local descriptors using Gabor �lters

responses, where the �lter parameters are �xed [113, 24, 5, 76, 122, 109]. The adaptation of

�lter parameters to particular object components was �rst exploited in [53]. They propose

to select Gabor function parameters in a semi-automatic fashion, using the local maxima of

the \Information Diagram". The Information Diagram plots t he magnitude of the Gabor
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response for several scales and orientations at an interest point. We expand the concept

of the Information Diagram to the Extended Information Diagram function, by adding the

frequency parameter to the function. The set of parameters (scale, frequency and orienta-

tion) that best represent an object component corresponds to local maxima in the Extended

Information Diagram function.

We model an object component by means of a feature vector formed from Gabor �lter

responses evaluated at the interest point of the object component. In order to compute Gabor

responses, we use the parameters provided by the Extended Information Diagram. Thus, we

utilize a �lter bank matched to each object component in the sense of using the �lter bank

yielding the largest energy. This procedure automatically selects the adequate parameters of

the Gabor �lter to model a particular object component. We shall now see how to apply the

parameter selection approach with histogram-based descriptors.

Histogram-based descriptors

Additionally, we explore the Gabor �lter parameter selectionto improve one of the most

successful local descriptors presented in the literature, the SIFT [70] descriptor. Due to its

particular way of extracting information from a local neighborhood, the SIFT descriptor has

the best distinctiveness when compared to state-of-the-art local descriptors [83]. SIFT is a

histogram-based descriptor that encodes local appearance using the image gradient in the

neighborhood of an interest point. The local neighborhood isdivided according to a cartesian

grid and the histogram of the gradient orientation, weightedby its magnitude, is computed

for each subimage.

SIFT uses the pixel di�erences to estimate the image gradient,a procedure sensitive to

noise and other artifacts. Instead, we propose to use the Gabor �lter parameter selection,

picking the �lter yielding the largest energy at every point in the neighborhood. In general,

the use of odd Gabor �lters instead of pixel di�erences to approximate �rst order image

derivatives allows us to improve the distinctiveness of the SIFT local descriptor.

So far we have presented a top-down saliency computation method that is able to in-

troduce speci�c information of the object components and local descriptors that represent

component appearances. The remaining step is to choose an adequate object model for object

recognition.

1.2.3 Object recognition tests

In this thesis we have proposed models for interest point selection and local descriptor com-

putation. These models �t in the �rst two steps of component-based object recognition.



1.3. CONTRIBUTIONS 11

The remaining step for performing full object recognition isthe choice of the model. In

order to evaluate the performance of the proposed component models in di�erent full object

recognition problems, we consider both appearance-only and shape-and-appearance models.

All appearance-only object models share the same properties and drawbacks. However, a

recent model based on cortex-like mechanisms [109] has demonstrated very good performance

and versatility in various kinds of visual tasks. This appearance-only architecture uses a dense

Gabor-�lter-based representation for local descriptors, allowing us to compare the state-of-

the-art �lter-based descriptors against the histogram-based representations. Thus, within

this framework, we compare SIFT [70], HMAX [103], and the SIFT improvement described

in Section 1.2.2.

Regarding shape-and-appearance models, there are several approaches in the literature, so

it is harder to compare methods in a qualitative manner. Nonetheless, the Pictorial Structure

[47] includes various state-of-the-art properties: (i) joint estimation of shape and appearance,

(ii) availability of e�cient methods for matching, and (iii ) robustness to partial occlusions

of the object. We assess the following models presented in this thesis: (i) the top-down

discriminant saliency, (ii) the �lter-based, and (iii) the histogram-based descriptors.

The experiments in cluttered scenes show the capabilities of:

� the top-down saliency model, bringing e�ciency to the subsequent steps of object

recognition,

� the improved SIFT descriptor, increasing the matching capabilities of SIFT, and

� the HMAX-based descriptor and matching procedure, demonstratingthat Gabor-based

approaches are feasible in the object recognition context.

1.3 Contributions

The general contribution of this thesis is the construction ofnew models for component-

based approaches to object recognition. These models are general in the sense that they can

capture most of the interest regions that may appear in everyday images. More speci�cally,

the contributions of this thesis are:

� A top-down saliency model that extracts low-level wavelength information of object

components, reducing the computational complexity in the subsequent steps of object

recognition.
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� A method to de�ne the intrinsic scale of an object component. This method relies on

the wavelength pro�le function and is able to estimate the intrinsic scale in di�erent

image structures.

� A clear way to explore the parameter selection paradigm for Gabor �lter functions,

with the ability to construct two types of local descriptors, suitable for representing

the appearance of object components.

� A �lter-based local descriptor built with Gabor responses that selects the best parame-

ters according to each image region to form an adaptive Gabor�lter bank.

� An improved SIFT local descriptor using Gabor �lter parameter selection to determine

the best �lter to compute �rst order image derivatives.

1.4 Thesis organization

This thesis is organized as follows: In Chapter 2 we tackle the interest point selection prob-

lem, introducing a top-down saliency point detection procedure that uses a frequency pro�le

function. We also present a new way to compute the intrinsic scaleof an image region, using

this novel frequency pro�le function.

In Chapter 3 we introduce the parameter selection paradigm inorder to build a �lter-

based local descriptor. We explain �rst how to build a good descriptor and we then add scale

and rotation invariance to that descriptor.

In Chapter 4 we use the parameter selection paradigm in order toimprove the SIFT

local descriptor. We explain how to select the Gabor �lters to compute �rst order image

derivatives, the initial step of SIFT computation.

In Chapter 5 we perform an object category detection experiment using an appearance-

only model to evaluate the improved SIFT descriptor, followed by an object detection and

localization experiment that uses a shape-and-appearance model [47] in order to evaluate the

top-down saliency model and the adaptive Gabor bank and SIFT descriptors.

In Chapter 6 we draw the thesis conclusions and establish directions of future work.



Chapter 2

Interest point selection

Component-based approaches for object recognition represent objects as collections of their

parts. When searching for learnt objects, the selection of candidates for object components

in new images is very important. Only \promising" points should be evaluated in the image;

otherwise, in the case of unseen cluttered scenes, matching can bea very computationally

expensive procedure. In order to avoid an exhaustive search, several authors utilize saliency

operators that act like attentional mechanisms, concentrating computational resources on

a few, highly promising points. The procedure to detect interest points can be oriented

bottom-up or top-down. Bottom-up methods extract interest points using only image data

criteria, while top-down methods also introduce task and context related information.

Most of the saliency functions proposed in the literature are bottom-up processes. They

capture the variability of low-level signal attributes, like contrast, color, orientation or tex-

ture. This detection process does not rely on the informationabout the type of object to be

recognized (the task).

Instead, top-down saliency methods are based on the task/goal description to guide the

search process towards image regions that are likely to be parts of the sought objects. They

are object or task-speci�c and require an initial learning phase, where the saliency �lters are

designed based on a number of samples of the object regions.

We propose a top-down saliency mechanism that operates over bottom-up interest points

to vastly reduce the amount of candidates for matching/recognition. We design a novel

saliency operator, conceived to encode object component information, which is based on

the isotropic wavelength (texture) characteristics of the object component to detect. We

explain how to compute and match the top-down saliency model for an object component

and show how the proposed method is able to reduce signi�cantly the number of candidates

for recognition.

The properties of the saliency function are also exploited forthe de�nition of a novel

13
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method to compute the intrinsic scale of object components. This procedure provides scale

invariance to the saliency model during the learning and detection processes. In the �nal

part of this chapter we evaluate the performance of the top-down saliency method in a facial

landmark candidate selection task.

2.1 Related work

We start with a brief revision of the most relevant approaches for interest point detection,

considering both bottom-up and top-down approaches.

2.1.1 Bottom-up interest point selection

Initial approaches for bottom-up interest point selection focused on locating image features

like edges and corners [44, 11]. The scale of the features was rarely addressed in these works

and although spatial support was considered, it usually had a �xed value during interest

point detection.

The spatial support of the feature is an important parameter that one must take into

account. As pointed out by Crowley et al. [18], scale (i.e. spatial support) should be used as

an additional parameter to build the shape model of an object.In that work, the scale-space

structure of a particular image was utilized to build a graph that represents the shape of an

object. The scale-space structure comprises location of peaks and ridges in the Di�erence of

Gaussians [18] pyramid of the object, using both 2D (space) and 3D(scale-space) peaks.

However, it was only after the introduction of scale-space as the solution to the di�usion

equation by Koenderink and Van Doorn [56, 58] that it was possible to de�ne scale-invariant

operators. Koenderink and Van Doorn introduced the Gaussian function and its derivatives

of order n as solutions of the di�usion equation applied to images. Later,Lindeberg used

the scale-space formulation in order to introduce a method forlocating image features in

scale-space [66]. Lindeberg's method provides (x i ; yi ; si ) points (wherex; y stand for position

and s for scale) by computing local extrema of scale-normalized operators applied to the

imageI (x; y). Lindeberg de�nes scale-normalized operators for blobs, junctions, edges, ridges

and local frequency estimation [66]. An appropriate identi�cation of the scale of the image

features is essential to match object components correctly.

In practical terms, the scale invariance of any interest point detector does not guarantee

awless matching of object components. In order to assess matching capabilities, Mikolajczyk

and Schmid propose the repeatability criterion [80]. The idea of the criterion is that once

interest points are detected, the same points should be detected in any other image of the same
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object, up to occluded regions. They evaluated the robustness to scale changes of several

operators: the Di�erence of Gaussians, scale-space versions of image gradient, Laplacian,

and Harris [44] (cornerness) function. The best repeatability was achieved by the scale-

normalized Laplacian followed by the Di�erence of Gaussians (DoG) operator.

Interest point detection should cope with viewpoint transformations as well. Mikolajczyk

and Schmid proposed in [82] an algorithm to provide local a�neinvariance properties to

the scale-adapted Harris detector. The a�ne shape of a point neighborhood is estimated

based on the windowed second-order moment matrix that computes an average of �rst order

derivatives over the vicinity of an image point. The proposedalgorithm uses the eigenvalues

of the windowed second-order moment matrix as the initial values to search for the local

a�ne parameters, such that two image patches related by an a�netransformation become

identical. They show experimentally that a�ne-covariant1 regions can be matched in images

with severe viewpoint transformations. In a more recent work, Mikolajczyk et al. [84]

compare the repeatability of several a�ne region detectors, concluding that Maximally Stable

Extremal Region (MSER) [78] and Hessian-a�ne [84] have better repeatability in average.

MSER [78] are connected components of a thresholded image, whose pixels have either larger

or smaller intensity than all pixels on its outer boundary. TheHessian-a�ne [84] detector

selects local maxima of the Hessian matrix determinant and estimates the shape adaptation

matrix in the points selected by the Hessian matrix. The Hessian-a�ne detector locates blobs

and ridges covariant to a�ne transformations up to a rotation factor.

All previous methods rely on Gaussian derivatives to detect salient points in a bottom-up

fashion. There are other bottom-up techniques based on di�erent functions to detect interest

points. Kadir and Brady [51] de�ne salient points based on localmaxima of Shannon entropy

along several scales. In the case of pixel intensities, the Shannonentropy has small values

in constant intensity regions, while it has larger values in image regions with high intensity

variations. Later, Kadir et al. [52] added a�ne invariance to the salient point detection,

showing better repeatability and matching results than Di�erence of Gaussians and Harris-

a�ne detectors.

Itti et al. [49] propose a salient point detection for visual attention applications. They

propose a biologically plausible architecture that builds a saliency map by applying \center-

surround" �lters sensitive to multiple scales, in color and intensity images and a Gabor

�lter bank sensitive to several scales and orientations. Then theinformation of all �lters is

combined across scales, building three \conspicuity maps" for intensity, color and orientation.

The conspicuity maps are normalized and summed into the �nal saliency map. In the last

step, they simulate visual attention by shifting the focus of attention to the most salient

1Corresponding regions in the two images are called covariant.
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image location (i.e peak in the saliency map). After attendingthe current focus of attention,

the location is inhibited in the saliency map to force an attention shift to the consecutive

most salient point. This attention-based saliency mechanism hasshown performance similar

to the primate visual system for saliency-driven focal visual attention.

We have briey presented bottom-up salient point detection approaches, applied to a va-

riety of tasks. Bottom-up approaches are \general" salient point detection methods that can

be shared across several computer vision tasks, performing the samecomputations regardless

of the system's goal. Points selected by bottom-up techniques can be used in any high-level

visual task, like shape recognition [85], object representation [70, 107, 81], visual attention

[49, 120], wide baseline stereo matching [78], and mobile robot navigation [108]. Now we

revise approaches where salient point detection is guided in atop-down manner by the task

and context dependent criteria.

2.1.2 Top-down interest point selection

Top-down approaches for salient point detection use task-speci�c information to select the

points of interest that are relevant to the task, neglecting the others. For instance, if we are

searching for oranges, we should reject any points not having a strong enough red value in

their color information.

Several top-down interest point selection methods have been proposed in the context of

feature tracking, one of the most important tasks in computer vision [72, 35, 111, 41, 116].

The points selected for tracking are the local minima of the template matching cost function,

which minimizes the error between image patches and a template, under a set of possible

transformations applied to the template. Initial approaches by F•orstner [35] and Harris

[44] consider translation transformations of the patches. Later, Triggs [116] considers a wide

range of patch transformations, including a�ne deformation and illumination changes. Triggs

de�nes a reduced scatter matrix (reduced in the sense that it considers a�ne transformations

only) that evaluates the self-matching properties of an interest point. Interest point selection

relies on the minimum eigenvalue of the scatter matrix that reects the maximum permissible

errors in translation, rotation, and scale. We consider this interest point selection oriented

top-down because interest point locations depend on the imagetransformation (i.e. motion)

model. It is important to remark that the Harris corner detector [44] has been referred to

as a bottom-up interest point detector in most of the works, but Triggs [116] presents an

approach where the Harris detector is a particular case of a top-down salient point detector.

A recent work considers the idea of \discriminant saliency" [39], where the salient points

are extracted from the features that enable best discrimination between one class and all

other classes. Gao and Vasconcelos [39] compute a saliency map forall images in the pos-
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itive class to select the most salient locations, their strength, and scales. The discriminant

saliency map is a weighted sum of feature responses at every pixel. In order to consider

discrimination power between classes, the weight of each feature is the marginal diversity

[117]. Vasconcelos introduced the marginal diversity as a feature selection method, which

under some assumptions selects a subset of the feature space that maximizes the mutual

information of class labels and features. Thus, weights enforce features that provide the best

recognition performance of a speci�c class. This top-down saliency procedure selects the best

features (�lter, location, and scale) for each class and can beviewed as a weakly supervised

method to perform image segmentation of an image class.

While Gao and Vasconcelos' discriminant saliency selects salientfeatures for each class, we

propose an approach where saliency is guided by object components. We use the component's

appearance to de�ne a saliency operator that captures texture related low-level properties of

an object part, creating a coarse component model. This saliency model selects only a limited

number of image pixels as candidates for object components to recognize, thus discarding

irrelevant information. This approach is also addressed in ourprevious publications [87, 89].

2.2 Using texture for component-based saliency

When searching for an object component, we propose to use its speci�c local texture char-

acteristics as the main discriminant feature for selecting candidate points. Obviously, this

does not prevent the use of other important feature dimensions(e.g. color), but here we

are only considering gray-scale information. Gabor �lters are among the most successful

methodologies to extract texture information. After convolving an object component patch

with a particular Gabor �lter, we obtain a �lter response that r epresents the amount of over-

lap between the texture represented by the �lter and the texture in the object component.

We will exploit the properties of Gabor Filters to represent texture and introduce top-down

information to select object component candidates from a set of interest points.

2.2.1 Gabor functions

The 2D zero mean isotropic Gabor function is expressed as:

g�;�;� (x; y) =
e� x 2+ y 2

2� 2

2�� 2

�
e

j 2�
� (x cos(� )+ y sin( � )) � e� 2� 2 � 2

� 2

�
; (2.1)

where the parameters� , � , and � are the wavelength (inverse of spatial frequency), orienta-

tion, and width (spatial support) of the Gabor function. Figure 2.1 shows the appearance of
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some Gabor kernels as a function of� , � , and � .

(a) � = f 3; 9; 15; 20g

(b) � = f 0; �
6 ; �

3 ; �
2 g

(c) � = f 3; 9; 15; 20g

(d) � = f 3; 9; 15; 20g

Figure 2.1: Examples of Gabor functions. Each row shows the real part of the Gabor function
of Equation (2.1) for di�erent values of � , � , and � . The last row shows the magnitude of
the �lter for several widths. All images have equal size.

This conventional form of representing Gabor functions doesnot provide a simple repre-

sentation of the �lter scale. In fact, a scale change of the Gaborfunction must consider the

recalculation of two parameters: the width and the frequency. We observe in Figure 2.1(c)

that the visual aspect of the Gabor function changes severely bychanging only the �lter width

value (� ). In order to localize scaled versions of a reference wavelet in the time-frequency

plane, the wavelet theory [74, 73] de�nes a ratio that includes the scaling parameter and the

center frequency, as follows:

� n =
� 0

s
: (2.2)

The Equation (2.2) expresses the center frequency of the scaledwavelet (� n ) as the ratio

between the center frequency of the reference wavelet (� 0) and the scale parameter (s). We

follow this reasoning and introduce the ratio between wavelength (multiplicative inverse of
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the frequency) and width as a new parameter

~� =
�
�

; (2.3)

proportional to the number of wave periods within the �lter width. ~� is a scale invariant

wavelength parameter. Substituting the expression for� from Equation (2.3) into Equation

(2.1), the Gabor function is reparametrized as

g�; ~�;� (x; y) =
e� x 2+ y 2

2� 2

2�� 2

�
e

j�
~��

(x cos(� )+ y sin( � )) � e� 2� 2
~� 2

�
: (2.4)

Figure 2.2 shows examples of Gabor functions of Equation (2.4) for a constant ~� value. In

(a) � = 5 (b) � = 10 (c) � = 15

Figure 2.2: Examples of Gabor functions of Equation (2.4), using ~� = 1=3

that �gure we note that �xing ~� keeps the shape of Gabor functions constant, so that the

number of wave periods within the �lter width is 1:5 regardless of the �lter width. Thus, by

keeping the value of~� constant, the �lter appearance is maintained for di�erent � .

The Fourier analysis techniques denote Gabor functions as time-frequency atoms [73]

(time switches to space on images), due to the concentration of their energy in Heisenberg

boxes. A Heisenberg box (given by its center, time spread and frequency spread) provides the

resolution of a Gabor function in the time-frequency plane and is de�ned by the parameters

of the function. Figure 2.3 illustrates the Heisenberg boxes ofa 1D Gabor function and its

scaled version. The center frequencies of those boxes are related as presented in Equation

(2.2).

The Heisenberg box with parameters� 0 and � of Figure 2.3 is analogously related to the

isotropic 2D Gabor function with parameters� = 2�=� 0 and � in Equation (2.1). A time-

frequency Gabor atom extract the energy of a well localized part of the spectrum that are

particular textured patterns parametrized by � and � . In addition, the texture orientation

is provided by the angle� .
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Figure 2.3: Example of the time-frequency localization of the Heisenberg boxes of 1-D Gabor
atoms. The reference Gabor function (bottom left) with its correspondent Heisenberg box
(top left) and the scaled Gabor (bottom right) with its respective box. � ! is the frequency
width, � is the time width, � 0 is the center frequency of the reference wavelet, ands is the
scale factor.

2.2.2 Representing texture of object components

The convolution of the Gabor function with the imageI (x; y) allows us to extract the energy

of a well localized part of the spectrum. The Gabor response at object component location

(xc; yc) is

(g�;�;� � I )(xc; yc) =
Z Z

I (x; y)g�;�;� (xc � x; yc � y)dxdy: (2.5)

The parameters� , � , and � characterize the dominant texture of the object componentc.

One approach to select the texture that characterizes that object component would be to

compute the response of several Gabor �lters, tuned to di�erent orientations, wavelengths,

and widths and retain the parameters corresponding to the maximum response:

(�̂ c; �̂ c; �̂ c) = arg max
�;�;�

j(g�;�;� � I )(xc; yc)j: (2.6)

The set of parameters provided by the Equation (2.6) de�ne a particular Gabor function

that captures the object component appearance as an oriented texture. However, if we

apply a geometric transformation to the component, we obtaina di�erent set of parameters.

Thus, the obtained texture description is not invariant to theorientation and spatial support

(analysis window) of the object component. In the next sections we introduce a Gabor-based
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texture representation invariant to common 2D geometric transformations.

2.3 Component invariant texture: the � -signature

The parameters of the oriented texture selected by Equation (2.6) will change whenever the

image is subjected to geometric transformations. In order to obtain invariance to rotation

and size of the analysis window, we proceed as follows:

1. Integrate the response of the Gabor �lters for all orientations and spatial supports:

Sw(xc; yc; � ) =
Z 1

0

Z �

� �
(g�;�;� � I )(xc; yc)d�d�; (2.7)

whereSw stands for Gabor wavelength saliency function. At component point (xc; yc),

this is a function of the wavelength only and for each value of� , Sw sums the contribu-

tion of all Gabor �lter responses, which were computed with thatparticular wavelength

� . Thus, the Sw function can be viewed as the� -signature of the component under

analysis. This function will give us the \energy" of the objectcomponent for any

wavelength of interest, independently of its orientation and spatial support.

2. The � -signature of an object component is independent of the orientation and extent

of the analysis window, but it is not scale invariant. If we compute the � -signature

in a rescaled version of the image, the signature amplitude and location in � axis will

change. To overcome this problem we need to compute the intrinsic scale of the object

component and use this parameter to normalize the� -signature. Finally, we map� -

signature to scale invariant values, using the scale invariant wavelength ~� as given in

Equation (2.3).

We could have selected a standard isotropic �lter like the Laplacian of Gaussian (i.e. Mex-

ican Hat) to extract the texture characteristics. However, the wavelength saliency function of

Equation 2.7 is built on very well localized time-frequencyGabor atoms, so theSw function

extracts a very well localized energy spectrum in the time-frequency plane for all wavelength

values. In di�erence, the energy spectrum of the Laplacian of Gaussian has a large overlap

even at small wavelengths (high frequencies), thus extracting similar information at that

range. To illustrate the di�erence in overlap, Figure 2.4 shows the Fourier transform of two

LoG functions and twoSw functions.

In the next sections we will explain in detail the two steps briey described above.
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(a) Laplacian of Gaussian functions (b) Sw functions

Figure 2.4: Magnitude of the Fourier transform of two LoG functions (left side) and two Sw

functions (right side). The center frequency of both type of functions is the same, so theSw

functions have a better selectivity of the energy spectrum.

2.3.1 The \Gabor wavelength saliency" operator

To compute the� -signature of an object component one could use the direct implementation

of Equation (2.7). However this would require a signi�cant amount of computation. To

overcome this problem we de�ne an equivalent kernel that �lters the image just once for each

wavelength. The equivalent kernel is obtained by summing theGabor kernels for all spatial

supports and orientations and is denoted \Gabor wavelength Saliency" kernel,

w(xc; yc; � ) =
Z 1

0

Z �

� �
g�;�;� (xc; yc)d�d�: (2.8)

The closed form expression for the wavelength-space kernel is the following:

w(r; � ) =

p
�= 2
r

�
� e

� 2�r
� + J0

�
2�r
�

��
: (2.9)

where, r =
p

x2
c + y2

c , and J0(z) is the Bessel function of the �rst kind. Looking at Equa-

tion (2.9), the equivalent kernel is an exponentially decreasing 2D Bessel function and it is

rotationally invariant because it is explicitly expressed in terms ofr .

The kernel computation from Equation 2.8 and Equation 2.9 assume spatial support

values not present in discrete images (e.g. 0,1 ). Considering the resolution limits in discrete

images, the lower and upper limits of the spatial support (� ) in Eq.(2.8) cannot cover the

whole interval [0; 1 ). We use image resolution constraints to de�ne the adequate� integral

limits in Eq. 2.8. In the case of the lower� limit of the integral in Eq. (2.8), we consider
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that the Gabor wavelength should not be greater than the Gaussian envelope (� � 6� ), so

� � �
6 , otherwise no signi�cant texture information is provided. In the case of the upper�

limit of the integral, we �rst �nd an appropriate minimum ~� using the expression

~� = �=�:

Due to the discrete nature of images, the wavelength value is provided by the Nyquist sam-

pling (� = 2). To sample adequately a Gabor �lter with � = 2, the �lter width must be

greater than 1 (� > 1). We choose� = 2 and replacing both � = 2 and � = 2 values yields
~� = 1. Having the minimum ~� , the upper integral limit is � = � . Recomputing the Equation

(2.8) with the new integral limits, the equivalent kernel forthe wavelength signature is:

wd(x; y; � ) =
Z �

�= 6

Z �

� �
g�;�;� (x; y)d�d�; (2.10)

where wd stands for the equivalent kernel for discrete images. The closedform expression
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Figure 2.5: Example of� -signature equivalent kernel. Top �gures, 3D plot and 1D slice of
wd(x; y; 5). Bottom �gures, 3D plot and 1D slice ofwd(x; y; 10)
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of Equation (2.10) is presented in appendix A.1 and Figure 2.5 shows an example ofwd.

Therefore, the computation of the� -signature of the object component located at point

(xc; yc) can be e�ciently performed by:

Swd (xc; yc; � ) = I � wd: (2.11)

We utilize Equation (2.11) to compute the signature of objectcomponents in discrete

images. Even though the� -signature is invariant to image rotations, image scale changes

will cause the� -signature to translate in the wavelength axis, and its amplitude will change

linearly with the scale factor. Now we tackle the problem of ensuring scale invariance for the

� -signature in Equation (2.11).

2.4 Providing scale invariance for the � -signature

We analyze �rst the behavior of the� -signature amplitude under scale changes. To obtain a

coe�cient that performs scale-normalization of the amplitude of the � -signature, we follow

Lindeberg's idea to provide a scale normalization for features [66]. The rationale is to �nd a

normalization factor speci�c for each feature, proportional to the width of the operator. The

second step to normalize the� -signature consists in mapping� values to the scale invariant

wavelength parameter~� .

2.4.1 Amplitude normalization

In order to normalize signature amplitude, let us consider twoimages: the initial image

I (x; y) and an homogeneously scaled version of the initial image,I s(x; y). The new image is

scaled by a factora: I s(x; y) = I (ax; ay). The � -signature at I s(xc; yc) is:

SI s
w (xc; yc; � ) = I s � w = w � I s

=
Z Z

w(x; y; � )I s(xc � x; yc � y)dxdy

=
Z Z

w(x; y; � )I (axc � ax; ayc � ay)dxdy
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Now let �x = ax, �y = ay, and �� = �a . Then dx = d�x=a, and dy = d�y=a. By making

substitutions in the equivalent kernel of Equation (2.9),

SI s
w (xc; yc; � ) = ( I � Sw)(axc; ayc; �a )

=
�
��

SI
w(axc; ayc; �a )

(2.12)

�nally yielding:
1
�

SI s
w (xc; yc; � ) =

1
��

SI
w(axc; ayc; �a ): (2.13)

From Equation (2.13) we see that if we multiply the response of the kernel by the inverse of

the wavelength, the� -signature amplitude becomes normalized with respect to scalechanges.

Thus, the amplitude normalized� -signature at point (xc; yc), is:

Snorm
w (xc; yc; � ) =

1
�

(I � wd): (2.14)

Equation (2.14) introduces the scaling factor 1=� , which guarantees theoretically the same

amplitude of the � -signature for two images with di�erent scales. But in real images, the

amplitudes will have very similar values and not the same valuedue to the discretization

e�ects of image subsampling on high frequencies. Figure 2.6 illustrates the e�ect of the scale

normalization of Sw amplitude by plotting both Sw and Snorm
w at an eye's center point of

scaled images. We observe in Figure 2.6(b) a larger di�erence between the response ofSw

in scaled images, while in Figure 2.6(c) the normalized responseof Snorm
w is very similar

between scaled images. However, if we want to match the signatures plotted in Figure 2.6,

it is necessary to warp one of the signatures before matching. Toovercome this problem

we need to compute the intrinsic scale of the interest point and use this parameter to map

� -signature to scale invariant values.

2.4.2 Scale normalization

Finally, to obtain a scale invariant signature, we have to map the � -signature function using

the intrinsic scale� int
2, as the normalization parameter:

~� =
�

� int
: (2.15)

2The intrinsic scale computation will be explained in the next section
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Figure 2.6: Example ofSw and Snorm
w for an eye's center point

In Equation (2.3) we presented~� as the scale invariant wavelength parameter of the Gabor

function. We apply the same de�nition, but replacing the �lter width � with the intrinsic

scale� int in order to map � values to the scale invariant~� values.

To determine the signature for a given interest point, we shouldconsider a range of

wavelength values, � = f � 1; : : : ; � k ; : : : ; � K g. This set can now be normalized with respect

to scale changes according to the procedure we described:

~� = f ~� 1; : : : ; ~� k ; : : : ; ~� K g = f � 1=� int ; : : : ; � k=� int ; : : : ; � K =� int g:

Finally, the ~� -signature (top-down saliency model) of the component located at point ( xc; yc),

encompassing this set of wavelength values, is denoted as~� S and de�ned according to:

~� Sxc ;yc (~� k) = Snorm
w (xc; yc; � k=� int ); ~� k 2 ~� : (2.16)

To illustrate the scale normalization procedure presented in this section, we show in Figure
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2.7: (i) the � � signature, (ii) the amplitude-normalized� � signature, and (iii) the fully scale-

normalized� � signature. The small di�erence of the signatures in Figure 2.7(d) is caused by

the discretization e�ects of the scaling procedure. There is aremaining issue to consider in

order to match the signatures of components: the intrinsic scalecomputation. This is the

topic of the following section.

2.5 Intrinsic scale from the � -signature

The work described in [66, 65] proposed an automatic selection of scale for several image

features: blobs, junctions, edges, and ridges. The procedure is to look for local extrema

in scale-space, using scale-normalized operators to �nd features' intrinsic scale, without any

prior knowledge of feature size. The intrinsic scale is characteristic of a given texture and

changes (proportionally) when the image scale is modi�ed. As such, it allows us to track

scaling modi�cations of a textured pattern through adequatenormalization. We could use any

of the operators proposed in [66, 65], but we noticed experimentally that the zero crossings

of the � -signature function closest to the global maxima are very stableunder image scale

changes and are directly proportional to the scale factor. Thus, we compute the intrinsic

scale� int at object component point (xc; yc) as:

� int = arg min
� 2 � 0

j� � �̂ j; � 0 = f � : Snorm
w (xc; yc; � ) = 0 g; �̂ = arg max

�
jSnorm

w j (2.17)

Figure 2.8 illustrates the similarity between the� -signature kernelw and the Laplacian

of Gaussian (LoG) kernel de�ned by Equation (2.18). Notice thatapart from the magnitude

and sign inversion, the two functions are very similar, but the� -signature kernel is sharper at

the origin. The extrema points of the LoG response provide the location of blobs in images.

With the addition of a scale-normalization factor (� 2 in Equation 2.19), the extrema points

of the LoG response compute the intrinsic scale of blob-like image structures (Equation 2.19).

Gw(x; y; � ) =
1

2�� 2
e� x 2+ y 2

2� 2 ;

LoGw(x; y; � ) = r 2Gw =
@2Gw

@x2
+

@2Gw

@y2
= �

1
�� 4

�
1 �

x2 + y2

2� 2

�
e� x 2+ y 2

2� 2 ; (2.18)

LoGnorm (x; y; � ) = � 2I � LoGw(x; y; � );

� LoG
int = arg max

�
jLoGnorm j: (2.19)
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Figure 2.7: Example of scale invariant signature,~� S.
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Figure 2.8: In left side we plot the 1D cutLoG(0; y;6), in the right side we plot the 1D cut
Sw(0; y;18)

2.5.1 Evaluation in synthetic images

We proceed now with a comparison between the proposed and classical forms of intrinsic

scale computation, respectivelySnorm
w and LoGnorm . We compute the intrinsic scale in the

center of a circle image and in the center of a ridge image, which we show in Figure 2.9. The

intrinsic scale is computed by using theSnorm
w zero crossing in Equation (2.17) and the global

maximum of jLoGnorm j in Equation (2.19). Each image is subjected to a scale change ofa

factor of 2. A correct intrinsic scale computation method should be able to obtain the scale

factor between images, by computing the ratio between intrinsic scales.

(a) r = 6 (b) r = 12 (c) width= 8 (d) width= 16

Figure 2.9: Circle and ridge synthetic images. Parameter values are in pixels.

In order to illustrate the intrinsic scale computation, we present in Figures 2.10 and 2.11

the Snorm
w and LoGnorm curves at the center point of the synthetic images, and the respective

intrinsic scale values in Table 2.1. As expected,LoGnorm computes a correct intrinsic scale

ratio in circle images because this operator was conceived todetect blobs. Even though the

Snorm
w scale ratio is not exact, it is a very good approximation to thecorrect scale ratio. In

the case of ridge images, we see in Table 2.2 thatSnorm
w intrinsic scale ratio is closer to the

real scale factor, whileLoGnorm scale ratio is farther from the real scale factor. The reason
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Intrinsic scale Snorm
w Intrinsic scale LoGnorm

circle r = 6 pixels 9.15 4
circle r = 12 pixels 18.01 8
intrinsic scale ratio 1.97 2

Table 2.1: Intrinsic scale at center point of circle images in Figure 2.9
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Figure 2.10: LoGnorm (left side) and Snorm
w (right side) for the circle images in Figure 2.9.

for this is that LoGnorm has a good behavior only with blobs. On the other hand,Snorm
w

computes adequate intrinsic scales for both circles and ridges.

Intrinsic scale Snorm
w Intrinsic scale LoGnorm

ridge width= 8 pixels 8.42 4 � 21=4

ridge width= 16 pixels 15.67 8
intrinsic scale ratio 1.86 1.68

Table 2.2: Intrinsic scale at center point of ridge images in Figure 2.9

To summarize, we have presented a synthetic image test to see experimentally the advan-

tages of the intrinsic scale computation by searching for the zero cross closest to the global

maximum of jSnorm
w j, presented in Equation (2.17). We propose a method that provides a

good approximation to the correct scale factor between images, with higher versatility than

LoGnorm . Using the intrinsic scale� int of Equation (2.17), we can now map the� values to
~� values, using the Equation (2.15). A more thorough analysis of the proposed intrinsic scale

computation method is provided in Section 2.7 and includes the use of real images.
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Figure 2.11: LoGnorm (left side) and Snorm
w (right side) for the ridge images in Figure 2.9.

2.6 Top-down saliency model with the � -signature

So far we have proposed a rotation and scale invariant signaturecomputed at object com-

ponent point (xc; yc). In order to estimate the top-down saliency model, we can use a single

example of the scale invariant signature~� S, or if training examples are available, a statistical

description of the data set can be computed (i.e. the mean). Thetop-down saliency model

of componentc is:

SMc(~� k) =

8
<

:

~� Sc(~� k); ~� k 2 ~� ; mean signature

~� S(~� k); ~� k 2 ~� single sample signature,
(2.20)

where ~� Sc denotes the mean value of~� Sxc
n ;yc

n
at locations of the object componentc in

the training set, f (xc
1; yc

1); : : : ; (xc
n ; yc

n ); : : : ; (xc
N ; yc

N )g. After having learnt an object compo-

nent model SMc, we can analyze novel images and select only those interest points with
~� -signatures conforming to the model. The rejection of bad candidates is performed by

matching the ~� -signature of the interest point~� Sxc ;yc with the saliency modelSMc, comput-

ing the euclidean distance between signatures. We reject~� Sxc ;yc if the euclidean distance is

greater than the threshold learnt in the training set.

The top-down saliency modelSMc de�ned in Equation (2.20) computes a wavelength

pro�le that captures the texture information of object component c. The steps to obtain the

invariant wavelength pro�le are as follows:

� Computation of the amplitude normalized signature,Snorm
w .

� Computation of the object component intrinsic scale,� int .

� Computation of ~� Sxc ;yc by mapping � to ~� values.
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The model can now be used to �lter out interest points very unlikely to be object com-

ponent c in novel images. To assess the properties of the saliency modelSMc, we present

some tests in the context of facial feature detection.

2.7 Tests

In the �rst test we assess the properties of the intrinsic scale computation using the � -

signature. In a second group of tests we perform interest point selection applied to face

components using the scale normalized� -signature.

2.7.1 Variance of intrinsic scale

We present results that illustrate the low variance of the intrinsic scale computation using

the � -signature, when compared toLoGnorm . The test comprises intrinsic scale computation

of facial landmarks in AR face database [77], using ground truthpoints provided by [16]. We

select 82 subjects without glasses and compute mean and varianceof the intrinsic scale at

several facial landmarks. In Figure 2.12 we observe the facial landmarks selected to compute

intrinsic scale.

Figure 2.12: Facial landmarks

Table 2.3 shows the results of mean and variance of the intrinsicscale for theSnorm
w ,

LoGnorm and the eyes ground truth. Considering only the eyes, we remarkthe very similar

values of the variances between the ground truth and the intrinsic scale fromSnorm
w . The
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Snorm
w LoGnorm

� 2
LoG norm
� 2

S norm
w

Ground truth

Facial Point � � 2 � � 2 � � 2

Left Eye center 6.1 0.4 4.4 1.5 3.75 3.81 0.33
Right Eye center 5.9 0.4 4.4 1.8 4.5 4.15 0.47
Left Eye corner 5 0.7 3.5 3.8 5.43 - -

Right Eye corner 4.4 0.8 6.7 5.8 7.25 - -
Nose 4.8 0.3 3.8 0.3 1 - -

Left Nostril 4.9 1 4.9 7.6 7.6 - -
Right Nostril 5 0.2 4.1 7 35 - -

Left Mouth corner 7.7 35.3 5.8 18.1 0.51 - -
Right Mouth corner 6.1 36 5.3 11.8 0.33 - -

Table 2.3: Mean� , variance� 2 of intrinsic scale, and variance ratio between intrinsic scales.
The last two columns shows the Mean� , variance� 2 of the ground truth obtained from the
pupils radii, computed from user-clicked points. For the rest of facial landmarks but the eyes,
is very di�cult to de�ne the spatial extent to have an adequate ground truth measurement.

Snorm
w intrinsic scale variance is in general lower thanLoGnorm intrinsic scale variance for

the eyes and nose facial landmarks, while in the case of mouth landmarks LoGnorm intrinsic

scale has a lower variance. Nevertheless, in the case of mouth landmarks, the variance of the

intrinsic scale is very large in both cases because mouth landmarks have a greater variability

(e.g. thin and thick lips, beard presence/absence), which questions the use of such landmarks

for facial analysis.

In order to measure quantitatively the variance relation betweenSnorm
w intrinsic scale and

LoGnorm intrinsic scale, we compute the variance ratio

� 2
LoG norm

� 2
Snorm

w

:

In most of the cases the ratio is greater than 1, meaning that theintrinsic scale fromSnorm
w

has smaller variance than the intrinsic scale fromLoGnorm . We must remark that the intrinsic

scale fromSnorm
w has smaller variance even in the case of blob-like facial landmarks like eyes

and nostrils. The reason for this behavior is that in the real images the eyes have two blobs:

one caused by the reection of light on the pupil and the pupil blob itself. The intrinsic scale

from Snorm
w is less sensitive to the presence of two blobs in the eye's interestpoint. In the

case of nostrils, their shape is elliptical instead of circular and the variation of nostril size

across subjects lead to intrinsic scale errors. Thus, in real images the intrinsic scale from

Snorm
w outperforms the intrinsic scale fromLoGnorm . Additionally, in the speci�c application

of intrinsic scale to normalize the� -signature, low variance values help to compute a model
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with higher precision.

2.7.2 Interest point selection of facial components

The goal of the tests in this section is to assess experimentally the most important properties

of the top-down saliency model of Equation (2.20): (i) removal of points very di�erent from

the model, having very few rejections of model points, and (ii) scale invariance of the~� -

signature. The data uses 82 subjects from the AR face database[77], where half of them are

used for learning the saliency model and the remaining half is used for testing our methods.

The saliency model is learnt in a supervised manner, using groundtruth component points

in order to compute the modelSMc.

We select candidates for facial components from a set of interest points. Four facial

components are modeled by the top-down saliency modelSMc of Equation (2.20): eye, nose,

nostril, and mouth corner. To estimate the saliency modelSMc, we use ground truth points

of the face components in the training set. The test stage is conducted as follows:

1. We de�ne a set of scales� 1 = 1; � 2 = 2; � 3 = 4; � 4 = 8; � 5 = 16

2. For a given scale� i , the set of interest pointsIP i is provided by local maxima of the

amplitude of the Laplacian of Gaussian response applied at� i ,

IP i = arg max
(x;y )

jI � LoGw(x; y; � i )j; (2.21)

whereLoGw is the Laplacian of Gaussian kernel presented in Equation (2.18).

3. The entire set of bottom-up interest points results from the union of the points detected

at all scales:

IP =
[

i

IP i (2.22)

4. Every point in the set IP is matched against the facial component saliency modelSMc.

The matching procedure rejects interest point locations with low similarity.

To evaluate the performance of the method, we compute the recall rate of facial component

detection,

recall =
# correct matches

# positive examples
: (2.23)

We consider a match as correct if at least one of the interest points selected by the saliency

model SMc is located in the proximity of the ground truth facial component location. Prox-

imity is de�ned as a circular region around the component's interest point of radius 5 pixels,

so points inside the circle are marked as correct matches.
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In order to evaluate the impact in computational complexityreduction, we compute the

removal rate of interest points not conforming with the model,

removal = 1 �
# points selected by SMc

jIP j
: (2.24)

Facial Component Recall removal (%)

Eye 100 79.64
Nose 100 80.03

Nostril 100 77.94
Mouth corner 90.2 89.9

Table 2.4: Results of top-down guiding search of facial landmarks

Table 2.4 shows that excluding the mouth corner point, we obtain perfect matching

performance, while removing interest points that are very di�erent from the facial component

we are looking for. In average we remove 79.21% of the initialLaplacian of Gaussian salient

points. The few missing points by the model are the corner mouth interest points. The

reason of this behaviour is the high visual variability of corner mouth components, leading

to a very unstable saliency model. As shown in Section 2.7.1, the mouth corner point is an

unstable landmark and should not be used as an object component.

These tests show experimentally how the proposed method succeedsin selecting object

components in a top-down manner. In the following set of tests, we check the scale invariance

of the saliency model.

Scale invariance of saliency model

Using the saliency model learnt in the previous section, we now analyze the performance of

the method in selecting candidates for facial components in scaled versions of the images.

We compute the mean recall rate for three facial components: eye, nose, and nostril. In

Table 2.5 we observe that the saliency model learnt at a �xed scale is highly tolerant to scale

changes up to� 0:5 octaves. The method is not fully invariant because of the verysmall size

of the nostrils in the lowest resolution images. However, the results in Table 2.5 shows the

suitability of the intrinsic scale method to provide scale invariance to the � -signature.
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scale change(octaves) Performance(%)
-0.5 93.49
-0.25 100

0 100
0.25 100
0.5 100

Table 2.5: Results of scale invariance test of the saliency model

2.8 Discussion

In this chapter we have exploited Gabor �lter parameters to represent texture. We charac-

terize an object component by its dominant texture, encodedin a new top-down saliency

operator, the � � signature. We showed suitability of the signature for modeling object com-

ponents, speci�cally in: (i) building a coarse appearance model of components, and (ii)

computing the intrinsic scale of the components.

The signature is utilized for selecting interest points conforming to a particular object

component and relies on a scale and rotation invariant wavelength signature. The rationale

behind the signature is to gather texture information in the object components, in order to

build a coarse appearance model suitable for interest point selection. The proposed appear-

ance based saliency function is characterized by the following properties:

� Successfully removes points that are very di�erent from the object component.

� Has very few rejections of true positives.

� Invariance to position, orientation and scale of the object component being searched.

These properties are adequate to include the saliency model proposed during the early

stages of the object recognition process in order to reduce thenumber of interest point

candidates for every component, decreasing signi�cantly thenumber of computations during

object matching process.

As a second application of the wavelength saliency operator, wedescribe a method to

compute the intrinsic scale of an interest point. The method proposed is able to compute a

very good approximation of the scaling factor between scaled image regions, having a similar

behavior to the scale-normalized Laplacian of Gaussian (LoG).The intrinsic scale� int from

the � -signature is characterized by the following properties:

� Higher versatility than the intrinsic scale� LoG
int from jLoGnorm j, supported by the correct

behavior of � int in both blob and ridge features.
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� Smaller variance than� LoG
int in the case of facial components of similar size.

In summary, we have shown how to apply the properties of Gabor �lters in the �rst step

of the component-based object recognition: interest point selection. In the next chapters, we

will explore Gabor �lter properties in the second step of object recognition: local descriptor

computation.
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Chapter 3

Filter-based descriptors

So far we have explored the use of the wavelength (inverse of frequency) parameter of the

Gabor function to select interest points in a top-down manner,preselecting candidates for

object components from a set of interest points. In this chapterwe show how to represent

object components in a much richer way, in order to perform component matching in a robust

manner under common image luminance and geometric deformations. Object components

will be represented by local descriptors. The local descriptorsproposed in the literature can

be divided in two main classes: �lter-based and histogram-based. Filter-based descriptors rely

on collecting and processing the response of linear �lters in theinterest point neighborhood,

like Gaussian derivatives [58], Gabor �lters [38, 21], and steerable �lters [36]. Histogram-

based descriptors [4, 70, 3] instead compute the statistical distribution of the image gradient

in image patches around the interest point.

In this chapter we focus on �lter-based descriptors, while histogram-based descriptors will

be addressed in Chapter 4. The motivation behind the usage of �lter-based descriptors is

two-fold:

� Biological �ndings of neuron responses in low-level visual cortex areas [46, 20] show that

the neurons' response pattern can be characterized as �lter responses (i.e. receptive

�eld responses).

� Linear �lters have been studied extensively in signal processingdomain, and formal

methods are available to tune their parameters in order to capture particular properties

of the image region under analysis.

From this class of descriptors, the ones used in [68, 109] in the HMAXarchitecture have

shown very good results in recognition performance. They are based on a very dense sampling

of the �lter-bank parameters (orientations and scales). Furthermore, they collect the �lter-

bank responses at all points in the image patch of interest. Usually these descriptors have a

39
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very high dimension, requiring large storage capabilities and long computation times in the

matching procedure. We denote this class of representation asdense descriptors.

Despite the descriptors of the HMAX architecture being state-of-the-art, their computa-

tion time is too long for the real-time demands of some applications. In this chapter we will

look at faster alternatives, tolerating a possible decrease in performance, but allowing deci-

sions to be taken in short time, depending on the application requirements. Several works

have adopted such a parsimonious representation paradigm to build local image descriptors

[113, 107, 47, 70] and they have shown good recognition rates in several applications. These

descriptors have a smaller dimension because they store the response of the �lter-bank only

at the interest point and have a sparser sampling of the parameterspace. Given their smaller

dimension, the matching process is very fast. This class of representation we denote assparse

descriptors.

In this chapter we adopt a sparse descriptor approach to object component representation.

Contrary to previous approaches, where the �lter-bank parameters are �xed regardless of the

object component to be described, we propose an adaptive computation of the �lter-bank

parameters depending on the particular image information.We use the Gabor �lter response

to select the most adequate parameters for every object component. The selected parameters

are then used to compute the feature vector. For the same vectordimension, an adaptive �lter

descriptor with appropriately selected parameters will, in general, overcome �xed parameter

descriptors in recognition performance. It will eventuallyapproach the performance of dense

representations, but with lower computational cost.

In the previous chapter we have shown that wavelength is an important Gabor parameter

for object component preselection. Likewise, we include all Gabor �lter parameters (scale,

orientation, and wavelength) in the adaptive descriptor. Toperform the selection, we look

for local extrema in the parameter space, of the response of Gabor �lters at the interest point

location [88].

Usually, approaches that use Gabor �lters as local descriptors are not fully invariant to

image transformations. To evaluate the robustness of the descriptor we analyze how it changes

under image rotations and scalings. Then, we introduce methods to achieve rotation and scale

invariance of the adaptive Gabor bank for object component modeling [89]. In summary, we

introduce a method that explores the richness of Gabor �lter parameters by selecting the

�lter parameters that best represent each object component, while being invariant to rigid

transformations.
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3.1 Related work

Here we review the most important �lter-based descriptors that have been applied to rep-

resent image patches. One of the most paradigmatic works on �lter based descriptors [58]

uses Gaussian derivative �lters. Gaussian derivatives of ordern capture the local structure

around an image pixel and can be viewed as then order coe�cients of the Taylor series

expansion of the image at that pixel. The parameters of Gaussianderivative �lters are the

derivative order and scale. In order to build Gaussian derivative �lter-bank descriptors, com-

mon approaches compute responses for selected derivative orders and scales. Then, responses

are stacked in a feature vector (i.e. local descriptor). Huttenlocher and Felzenszwalb [47]

represent the appearance of object components by convolvingthe object part with a set

of Gaussian derivatives. Schiele and Crowley [106] compute histograms of scale-normalized

Gaussian derivative responses of object components. In the case ofcolor images, Geusebroek

et.al. [40] introduced a Gaussian color model, utilized by Hallet.al. [42] to compute Gaussian

derivatives of color receptive �elds. Hall et. al. used the color di�erential structure provided

by Gaussian derivatives to compute local descriptors in color images. Local descriptors based

on Gaussian derivatives are able to represent object components, but in their standard form,

they are not invariant to common image transformations like rotations and scalings.

Koenderink and Van Doorn introduced the di�erential invariants [57], combinations of

Gaussian derivatives of di�erent orders invariant to 2-dimensional rigid transformations.

Schmid and Mohr [107] use these di�erential invariant responsesto compute local descriptors

(i.e. \local jets").

Freeman and Adelson proposed another approach to achieve orientation invariance, con-

sisting of the use of steerable �lters [36] to form a set of \basis functions." This procedure

allows to \steer" a �lter to any orientation. Rao and Ballard [102] apply a bank of steerable

�lters using Gaussian derivatives as \basis functions" in order to build descriptors of object

components.

Gabor �lters have a richer set of parameters than Gaussian derivatives and have been used

in some works as local descriptors [60, 122, 113]. Lades et.al.[60] and Wiskott et.al [122] use

Gabor �lter response to describe regions around nodes of a graph, computing a \Gabor jet"

(i.e. �lter bank). Smeraldi and Bigun [113] design a bank of Gabor �lters, whose energy is

spread in the frequency domain in a log-polar con�guration. The design criterion guarantees

that relevant frequencies are captured by the �lter bank. Then, the �lter bank is utilized to

represent facial landmarks.

The biologically inspired HMAX features [103] also use Gabor �lter bank responses to

compute local descriptors, but belong to the type of dense representations. The initial step
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is the computation of Gabor �lter responses using a �xed set of scales and orientations,

whose parameters are tuned similarly to V1 simple cells in the visual cortex of monkeys [20].

Then, local maxima over position and scale of the Gabor responsesgenerate the so called

C1 features, a dense and redundant representation of the local image appearance. The C1

representation has recently been used in object detection in cluttered images [109].

Our proposal belongs to the sparse type of Gabor �lter-based representations. One of

the most recent works in object recognition using Gabor �lters[59] proposed a sparse Gabor

feature representation, being invariant to scale, rotation,translation, and illumination image

transformations. This work introduces a feature matrix, where the (i; j ) component is the

Gabor �lter response at �xed scale� i and orientation � j . The rationale behind the matrix

is to cope with image rotations and scalings. If the matrix is computed from objects in

a standard pose, it is possible to introduce column-wise or/and row-wise shifts to match

the object. In order to handle linear illumination changes, the matrix is normalized by the

summation of all its components. An application of this idea is presented in [43], in a face

detection task using high resolution images.

In this thesis we go a step further by exploring all Gabor function parameters to represent

an object component. The adaptation of feature parameters to particular object parts was

�rst exploited in [53]. They propose to select the Gabor function scale and orientation

in a semi-automatic fashion, using the \Information Diagram" concept. The Information

Diagram represents the Gabor �lter response at an image point, as a function of the �lter

orientation and scale. We extend the Information Diagram concept to consider all Gabor �lter

parameters (scale, orientation, and wavelength), thus resulting in a 3-dimensional function.

3.2 Dense vs. sparse Gabor �lter-based descriptors

In this section we concentrate on descriptor models using Gabor�lters. We will start with

a brief description the HMAX model [109]. Given its reported state-of-the-art performance,

in Chapter 5 this model will be considered as a benchmark for comparison purposes.

3.2.1 The HMAX descriptor

The biologically inspired HMAX model was �rstly proposed by Riesenhuber and Poggio

[103] and recently revised by Serre et al. [109]. The HMAX architecture considers all phases

of an object recognition architecture, including feature extraction, local image description,

descriptor matching and object model learning and classi�cation. We start by describing the

way to represent an object component. Later, in Chapter 5, we will focus on object model
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learning and classi�cation.

In Figure 3.1 we can see a graphical description of the HMAX feature extraction steps

(from [109]). The feature extraction, descriptor de�nition, and matching steps are described

in the following algorithm:

1. S1 maps: First, images are analyzed with a Gabor �lter bank. The parameters of

the �lter bank are tuned for several scales (� ) and orientations (� ), similarly to V1

simple cells in the visual cortex of monkeys [20]. The maps created are denoted by

S1(x; y; �; � ), with x; y the image spatial coordinates.

2. C1 maps: Pairs of scale adjacent S1 maps are subsampled and combined into bands,

by computing the local maximum across scale. Thus, a pixel of theC1 map has the

strongest response between pixels at the same location in two adjacent scales. This

process is done for each orientation and pair of adjacent scales independently. These

maps are represented byC1(x; y; b; �), whereb is the band index. Figure 3.2 shows the

C1 maps of all orientations in the �rst band.

The two steps just explained (S1 and C1 maps) compute, for each pixel (x i ; yi ) in the

object component, a vector containing the local maximum in adjacent scales of the Gabor

�lters responses for the di�erent orientations. Therefore, they provide a dense Gabor �lter-

based representation as the component model that we refer to asu(b; �). In order to match

the descriptor in new images, we do as follows:

1. Compute the C1 map of the new image,X (x; y; b; �).

2. S2 maps: Compute the exponential mapping of the Euclidean distance between the

descriptor centered at all image pointsX (x; y; b; �) and u(b; �).

S2(x; y; b; �) = exp( �  kX (x; y; b; �) � u(b; �)k2); (3.1)

where is a tunable parameter.

3. C2 features: compute the maximum over all positions, bands and orientations at the

S2 map, obtaining a single value C2 for the object component

C2 = max
x;y;b;�

S2(x; y; b; �) (3.2)

Thus, a C2 value describes the strength of the most similar point inone image with

respect to the descriptoru of a particular object component. This value can be used to train

a binary classi�er with positive and negative examples of the component.
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Figure 3.1: Overview of HMAX feature extraction, extracted from [110]
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Figure 3.2: Sample C1-HMAX representation. (a) Original image. (b) C1-HMAX represen-
tation from the �rst band (4 orientations).

In general the HMAX descriptor and matching procedures are computationally heavy. In

the next section we address more compact approaches to build local descriptors using Gabor

�lter responses.

3.2.2 Sparse Gabor �lter-based component models

Sparse representations compute a feature vector that collects the Gabor �lter responses at

the interest point of the object component, using a �lter bank with parameters

f (� 1; f 1; � 1); : : : ; (� m ; f m ; � m ); : : : ; (� M ; f M ; � M )g. The most common way to build the feature

vector is to stack the amplitude of the responses at point (x; y) as follows:

u(x; y) =
�

u1(x; y); � � � ; um (x; y); � � � ; uM (x; y)
� T

; (3.3)

with

um (x; y) = j(g� m ;f m ;� m � I )(x; y)j; (3.4)

where (� m ; f m ; � m ) are the Gabor parameters used to compute the response atum , for a

�lter bank of size M . As an alternative the feature vector can contain both the real and the

imaginary part of the Gabor responses:

u(x; y) =
�

u1(x; y); � � � ; um (x; y); � � � ; u2M (x; y)
� T

; (3.5)

with

u2m (x; y) = Re(( g� m ;f m ;� m � I )(x; y)) ; u2m� 1(x; y) = Im(( g� m ;f m ;� m : � I )(x; y)) :

The rationale is to model object components by analyzing their contents in terms of edges

and textures of di�erent scales, orientations, and frequencies. Huttenlocher and Felzenszwalb
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[47] showed experimentally the adequacy of the Gaussian model of the �lter bank in the case

of Gaussian derivatives. We adopt this Gaussian assumption, modeling the local descriptor

as a random feature vector that follows a normal distributionwith mean � u c and covariance

matrix � c, u(x; y) � N (� u c ; � c). In di�erence to the Gaussian derivatives, the response of a

Gabor �lter is a complex number and its response can be considered as a 2D random vector

that follows a normal distribution with a two dimensional covariance matrix �, which is

included in the high dimensional matrix � c. The Gaussian assumption allow us to evaluate

in a straightforward classi�cation test the ability of the descriptor to discriminate correctly

object components.

In order to match the object component model in new images, we will compute the

distance between the model learnt and the novel patterns. We consider both the Euclidean

and Mahalanobis distances,

Euclideand2 = ( u(x; y) � � u c )
T (u(x; y) � � u c )

Mahalanobisd2 = ( u(x; y) � � u c )
T � � 1

c (u(x; y) � � u c ): (3.6)

The decision of whether a object component is present or not in acertain image pixel will

depend on the distance values computed.

3.3 Adaptive �lter-based descriptors

The dense and sparse models introduced in the previous section have di�erent characteristics.

Regarding the computational complexity of the matching procedure, the dense models need

very large times for matching. To illustrate this fact, let usconsider an object component with

sizeM � N and descriptor sizeS. The matching complexity of the dense descriptor HMAX

(with the addition of bands B and orientationsT) is O(M � N � B � T � S). On the other

hand, the matching complexity of the sparse models depends linearly on the feature vector

size,O(S), and those models have shown good recognition rates in severalapplications [113,

122, 5, 47]. Thus, we consider sparse component models with high e�ciency characteristics in

the remaining of this chapter. The sparse model of each component presented in this section

consists of a vector of Gabor �lter responses. However, instead of using prede�ned values

for the Gabor �lter parameters we propose methods for the selection of these parameters,

exploiting the speci�c properties of each object component.These descriptors areadaptive

to the local image information, which will lead to better performance than �xed parameter

descriptors.
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3.3.1 Parameter selection

We address the selection of the Gabor �lter bank with parametersf (� 1; f 1; � 1); : : : ; (� M ; f M ; � M )g

that best models an object component. We recall the 2D zero mean isotropic Gabor function,

written as:

g�;f;� (x; y) =
e� x 2+ y 2

2� 2

2�� 2

�
ej 2�f (x cos(� )+ y sin( � )) � e� 2� 2 f 2 � 2

�
; (3.7)

where the parametersf , � , and � are the frequency, orientation, and width of the Gabor

function. A straightforward approach to de�ne the �lter bank parameters would be to sample

the parameter space uniformly in some limited range. However, this may not be the best

strategy to exploit the particular characteristics of the object component under test since the

choice of the parameters would not be driven by the object speci�c appearance. Alternatively,

we can analyze the Gabor response function in the full parameter space (� , f , and � ) and

select those parameters that best describe the particular object component characteristics,

(�̂ c; f̂ c; �̂ c) = arg max
�;f;�

j(g�;f;� (x; y) � I )(xc; yc)j; (3.8)

with

(g�;f;� � I )(xc; yc) =
Z Z

I (x; y)g�;f;� (xc � x; yc � y)dxdy;

where (xc; yc) denotes location of object componentc in image I . However, the sampling

strategy of Equation (3.8) would select a single Gabor functionthat is insu�cient to discrim-

inate the modeled object component from others. Even if we select the �rst M local maxima

of the Gabor �lter response magnitude, this strategy could biasthe parameter distribution

to a too narrow range and reduce the discrimination capability of the �lter bank. In order

to maintain a uniform parameter range and still be able to adapt the representation to the

particular object component under test, we will sample one of the parameters uniformly and

perform a 2D search of local extrema in the remaining dimensions. We explore the three

di�erent options, sampling uniformly � , f , and � .

We have several ways of coding the object component appearance, as we can choose:

1. Which parameter we sample uniformly (�; f; � ),

2. The type of local extrema used to select the remaining parameters (e.g. only minima,

only maxima, and minima and maxima),

3. The metric to match object component model (e.g. Euclidean distance, Mahalanobis

distance), and

4. The response type (e.g. modulus, real + imaginary parts).
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In order to choose the most adequate option for every item, we evaluate the performance of

the di�erent alternatives in a facial component detection experiment. Then, we check the

robustness of the chosen local descriptor to image rotations andscalings.

Extended information diagram

The \Information Diagram" (ID) concept proposed in [53] selects the Gabor �lter parameters

semi-automatically. The ID represents the magnitude of the Gabor response at a certain

interest point of an object component (xc; yc), as a function of� and � , keeping the value of

1=�f constant. The ID function is de�ned as:

ID c(�; � ) = j(g�; 1
�f =1 ;� � I )(xc; yc)j:

Then, the parameters (�; � ) corresponding to local maxima of ID are chosen as \good"

Gabor function parameters because they represent the object component's characteristic

orientations and widths. We extend the ID concept to consider variability also in the 1=�f

value, by samplingf values independently of� values. Considering the parameters (�; f; � ),

the Extended Information Diagram is given by:

EIDc(�; f; � ) = j(g�;f;� � I )(xc; yc)j: (3.9)

EID c is the parameter space function of Gabor �lter responses at the interest point of the

object componentc. We analyze the EID function to select the adequate �lter parameters.

Parameter selection in the Extended Information Diagram

Considering the three dimensional parameter set, the strategy to �nd the adequate parame-

ters consists of \slicing" the parameter space and then searchingfor local extrema in the 2D

slices. We observe in Figure 3.3 the di�erent forms of slicing theEID function (Equation

3.9): � slices,� slices, andf slices. The strategy to �nd good parameters for each target is

based on uniform discretization of one of the parameters (say� ) of Equation (3.9) and search

for local maxima in the resulting set of EID slices. We denote the slices: � -ID, � -ID, and

f -ID respectively, keeping constant one of the parameters,� = � 0, � = � 0 or f = f 0 :

� -ID � 0
c (�; f ) = EID c(� 0; f; � ) (3.10)

� -ID � 0
c (�; f ) = EID c(�; f; � 0)

f -ID f 0
c (�; � ) = EID c(�; f 0; � )



3.3. ADAPTIVE FILTER-BASED DESCRIPTORS 49

Figure 3.3 shows some examples of the� -ID, � -ID and f -ID computed at an eye's center

point.
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Figure 3.3: Examples of� -ID, � -ID, f -ID, and � slices in the parameter space (from left to
right).

Continuing the � example, let us de�ne a setT = f � 1; � � � ; � l ; � � � ; � L g, containing uni-

formly sampled values of� within [0; � ). Thus, the set of � -IDs for object componentc is

given by:

�-ID T
c = f � -ID � 1

c ; � � � ; � -ID � l
c ; � � � ; � -ID � L

c g (3.11)

To select Gabor parameters, we assume that, in every slice, an object component has two

representative textures that can be extracted with local extrema points of the slice. The

initial hypothesis is to relate local maxima to signi�cant textures in the component and

local minima to textures with low weight. We do not knowa priori which is the best way

of combining the extrema points, so we consider some combinations of local minima and

maxima, provided by the two highest local maxima

(�̂ max
l;1 ; f̂ max

l;1 ) = arg max
�;f

� -ID � l
c ; l = 1; � � � ; L;

(�̂ max
l;2 ; f̂ max

l;2 ) = arg max
�;f;� 6= �̂ l; 1 ;f 6= f̂ l; 1

� -ID � l
c ; l = 1; � � � ; L; (3.12)
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and the two smallest local minima:

(�̂ min
l;1 ; f̂ min

l;1 ) = arg min
�;f

� -ID � l
c ; l = 1; � � � ; L

(�̂ min
l;2 ; f̂ min

l;2 ) = arg min
�;f;� 6= �̂ l; 1 ;f 6= f̂ l; 1

� -ID � l
c :l = 1; � � � ; L; (3.13)

The parameter selection of Equations (3.12)-(3.13) computes the \good" �lter parameters in

the case of� -ID. We can use the same strategy to select the parameters from� -ID and f -ID,

computing combinations of local maxima and minima. The appropriate sampling approach

(ID slicing) and the local extrema combination will be chosen in an experimental basis,

performing a facial component detection using eyes, nose, and mouth.

Now we have all the elements to build the component model of equations (3.3) and

(3.5). In order to estimate the model, we carry on the following steps: (i) compute a mean

component image�I c, then (ii) compute the Gabor �lter parameters from EIDc slices using
�I c, and (iii) compute the mean and covariance of the Gabor �lterbank response by applying

the �lter bank selected from EIDc in the training set of component images.

3.3.2 Parameter selection tests

We perform facial component detection in order to select the object component model struc-

ture that achieves the best performance. Then, we evaluate the invariance properties of the

model chosen, by detecting facial components in rotated and scaled images. Experiments

are set-up for evaluating the discretized parameters (� , f , or � ), the number and type of the

extrema computed at each ID, the distance metrics (Euclideanand Mahalanobis), and the

�lter response type (magnitudevs real-imaginary parts). We present in the Table 3.2 the list

of the degrees of freedom combined.

For each test shown in Table 3.2, we use 82 subjects from the AR face database [77], all

without glasses, where half of them are used for training (compute object component model

� c; � c) and the remaining half for testing (object component detection). We represent four

di�erent facial components: left eye, right eye, nose, and mouth. We use L = 12 slices of

EID and at each x-ID slice we choose either one local maximum andone local minimum or

two local maxima, so the number of �lters is kept constant (M = 2L = 24 in Equations (3.3)

and (3.5)). The number of samples of the training data set is notlarge enough for estimating

the full covariance matrix of the descriptor that contains the real and imaginary parts of

the Gabor response. Thus, we approximate the covariance matrixby computing a diagonal

matrix and consequently lose the covariance information between the real and imaginary

parts of the response. The sets of values for the� -ID, f -ID, and � -ID are, respectively,
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T = f 0; �= 12; � � � ; 11�= 12g, F = f 0:5; 0:4589; � � � ; 0:0063g, and S = f 4; 7; � � � ; 39g. All x-

IDs are calculated from the mean images�I c in the training set at each object component (left

eye, right eye, nose, mouth). In order to see the advantage overthe common �xed Gabor

�lter approach, we compare against the biologically plausible �xed parameters presented in

[61], using 4 orientations and 6 combinations scale-wavelength as shown in Table 3.1.

� (rows),� (columns) 1.7 3.7 7.4 14.8
0.95 X
2.12 X
4.35 X
8.75 X
17.5 X
35.04 X

Table 3.1: � and � pairs used in the test with �xed parameters. The orientation values used
are � = f 0; �= 4; �= 2; 3�= 4g

Test ID type # local max # local min distance mag re+im

1 � 1 1 Mah 68.49 78.33
2 � 2 0 Mah 85.92 95.83
3 f 2 0 Mah 58.19 74.16
4 f 1 1 Mah 54.41 75.83
5 � 2 0 Mah 58.19 72.50
6 � 1 1 Mah 50.21 72.50
7 � 1 1 Euc 31.93 85
8 � 2 0 Euc 38.87 87.5
9 f 2 0 Euc 17.86 53.33
10 f 1 1 Euc 15.55 45
11 � 2 0 Euc 24.79 74.17
12 � 1 1 Euc 15.97 75.83
13 �xed (Table 3.1) - - Mah 75.40 78.30
14 �xed (Table 3.1) - - Euc 68.51 71.33

Table 3.2: List of the performed tests to select the best target model. Recall rate in last two
columns(%)

To evaluate the performance of each experiment we compute the recall rate of facial

component detection,

recall =
# correct matches

# true positive components
: (3.14)

The recall rate represents the number of object components detected correctly, so a feature

vector with maximum recall will not miss any component. Thereis a correct match of an
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object component in a new image if the global minima of the distance to the model is located

in the proximity of the ground truth facial component location. Proximity is de�ned as a

circular region around the component's interest point, so points inside the circle are marked

as correct matches.

In Figure 3.4 we observe the average recall, marginalizing all tests for every degree of

freedom of the model. The marginalized results show that the most adequate selections are:

1. � is the parameter to sample uniformly,

2. two local maxima for each slice of EID are the type of local extrema to select �lter

frequency and width,

3. the Mahalanobis distance is the best metric to match object component models,

4. the union of real and imaginary parts of the Gabor �lter response outperforms the use

of magnitude alone, and

5. the adaptive parameter selection outperforms the �xed �lter-based approaches.

In the second row of the rightmost column in Table 3.2, we see thatthe best recall

rate is located in the test that combines the previous selections. The combination of� -IDs,

Mahalanobis distance and 2 local maxima has a success rate of 95%.

Let us summarize the results in a more formal way. The Gabor parameter selection that

has the best performance is:

�-ID T
c = f � -ID � 1

c ; � � � ; � -ID � l
c ; � � � ; � -ID � L

c g

where � l 2 T = f 0; �= 12; � � � ; 11�= 12g. We select in each 2D slice� -ID � l
c the parameters of

the two strongest local maxima:

(�̂ max
l;1 ; f̂ max

l;1 ) = arg max
�;f

� -ID � l
c

(�̂ max
l;2 ; f̂ max

l;2 ) = arg max
�;f;� 6= �̂ l; 1 ;f 6= f̂ l; 1

� -ID � l
c (3.15)

The chosen parameters de�ne a Gabor �lter bank of size 2L adapted to the object component

c. The respective local descriptor is:

u(x; y) =
�

u1(x; y); � � � ; u4L (x; y)
� T

(3.16)

u4l � 3(x; y) = Re(( g� l ;f̂ max
l; 1 ;�̂ max

l; 1
� I )(x; y)); u4l � 2(x; y) = Im(( g� l ;f̂ max

l; 1 ;�̂ max
l; 1

� I )(x; y));
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Figure 3.4: Mean detection rate of marginalized tests of Table 3.2

u4l � 1(x; y) = Re(( g� l ;f̂ max
l; 2 ;�̂ max

l; 2
� I )(x; y)); u4l (x; y) = Im(( g� l ;f̂ max

l; 2 ;�̂ max
l; 2

� I )(x; y)) ;

and the Mahalanobis distance for matching the target model. The object component model

is the mean and covariance matrix of local descriptor in Equation (3.16). In order to add

rotation and scale invariance to this model, we analyze �rst the robustness of the component

model to image rotations and scalings.

Discretization e�ects on rotated �lters

We test the rotation invariance of the Gabor �lter response on a synthetic image and evaluate,

in the face data set, the e�ects of Gabor response variations to rotated patterns. Due to

discretization e�ects and imperfect �lter symmetry, Gabor response presents small variations

with the amount of rotation. To illustrate this fact, we (i) compute the response of a Gabor

�lter at center point of a synthetic edge image, then (ii) compute the response of a� -rotated

Gabor �lter at the center point of the � -rotated edge image, and (iii) compute the response

di�erences in magnitude and phase, considering the initial image as reference. Figure 3.5
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shows the magnitude and phase errors for several� values. We can observe that there

are some errors in the magnitude and phase that, though not dramatic, can change the

performance of the detection algorithm.

We perform a similar test in the facial detection problem, to seethe variation of the

success rate of the component model when using rotated images. Wepick the component

model of Equation (3.16) as the reference, then we generate� -rotated models. To generate

the � -rotated component models we shift the angles in Equation (3.16),

u(x; y) =
�

u1(x; y); � � � ; ul (x; y); � � � ; u4L (x; y)
� T

(3.17)

u4l � 3(x; y) = Re(( g� l + �; f̂ max
l; 1 ;�̂ max

l; 1
� I )(x; y)); u4l � 2(x; y) = Im(( g� l + �; f̂ max

l; 1 ;�̂ max
l; 1

� I )(x; y));

u4l � 1(x; y) = Re(( g� l + �; f̂ max
l; 2 ;�̂ max

l; 2
� I )(x; y)); u4l (x; y) = Im(( g� l + �; f̂ max

l; 2 ;�̂ max
l; 2

� I )(x; y)) :

We compute the recall rate of the� -rotated model of Equation (3.17) in� -rotated images.

We see the variation of recall rate for several� values in Figure 3.6, when rotating both

the test images and the model. For simplicity, in this test we rotate the image regions

every �= 4, because it does not involve a recomputation of the target model, only a correct

circular shift of the vector is needed. We observe a very good behavior of the rotated model

in the rotated images, with recall above 91% (in the non-rotated test the performance is

95.8%). The implication of this result is important because wecan add rotation invariance

straightforwardly to the object component model, a method that will be explained in Section

3.4.2.
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Figure 3.5: Gabor �lter rotation robustness tests in synthetic images.
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Figure 3.6: Rotation robustness of the component descriptor inrotated images.

Scale robustness

To check the robustness to scale variations, we compute the recall rate in rescaled images

maintaining the object component model learned in the original images. Figure 3.7 shows a

performance above 90% for image rescaling up to� 20%, corresponding to a range of about

0.6 octaves. To cope with larger scale variations, one should cover the scale dimension with

additional object component models. If we sample the scale spaceevery 0.6 octaves, we

should be able to keep performance above 90%, provided that anadequate scale selection

method is available, like the intrinsic scale from� -signature presented in Chapter 2. In the

next section we go further by explaining how to attain theoretical scale invariance of the

object component model, which in practical terms enlarge the scale robustness.

3.4 Providing scale and rotation invariance

In the previous section we have derived an object component descriptor able to successfully

detect facial components. Although we have shown experimentally its tolerance to scale and

rotation changes of the image components, this was only validfor a small range. In this

section we propose methods that provide invariance to those transformations.

3.4.1 Scale invariance

In order to provide scale invariance to the local descriptor inEquation (3.16), we �rst analyze

how a Gabor response behaves with scale changes. Following the reasoning proposed in [59],
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Figure 3.7: Scale robustness test of Gabor �lter based local descriptor

we consider two images:I (x; y) and an homogeneously scaled version ofI (x; y). The new

image is scaled by a factora as I s(x; y) = I (ax; ay). The response of the scaled image at

point (x0; y0), is

(I s � g�;f;� )(x0; y0) = ( g�;f;� � I s)(x0; y0)

=
Z Z

g�;f;� (x; y)I s(x0 � x; y0 � y)dxdy

=
Z Z

g�;f;� (x; y)I (ax0 � ax; ay0 � ay)dxdy (3.18)

We now let ~x = ax and ~y = ay. We then havedx = d~x=a and dy = d~y=a. By making

substitutions in the Gabor function of Equation (3.7),

(I s � g�;f;� )(x0; y0) = ( I � g�;f=a;�a )(ax0; ay0): (3.19)

From Equation (3.19) we can see that the Gabor response remains constant in the scaled

image if we change both the width parameter� of the Gabor �lter to �a and the frequency

value f to f=a.

Thus, if we are able to estimate the scale factora, we can calculate the adjusted values

of the width � and spatial frequencyf in order to compute the object component descriptor

in the scaled image. A common approach to compute the scale factor a is to de�ne an

intrinsic scale at the interest point of the object component. For a given object component we
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compute the intrinsic scale� int in the training set, for example using the� -signature method

presented in Chapter 2. Then, to compute the component descriptor in scaled images, we

take the following steps:

1. compute the intrinsic scales in the new image.

2. compute the scale factora = s=� int , and

3. compute an adequate approximation for the local maxima parameters of Equation

(3.15),

s�̂ max
l;j = �̂ max

l;j a; j = 1; 2; l = 1; : : : ; L

sf̂ max
l;j = f̂ max

l;j =a; (3.20)

where the left subscripts in s� int , s�̂ max
l;j and sf̂ max

l;j stands for scaled image.

The new width and frequency in Equation (3.20) are the parameters to use now in order

to compute the feature vector of Equation (3.16). In the nextsection we will see how to add

invariance to image plane rotations.

3.4.2 Rotation invariance

The object component model in Equation (3.16) is obtained bysampling the angle� of the

Gabor �lter uniformly. Thus, we must shift the angles to computethe feature vector in

rotated versions of the object component. When we discussed the model robustness to image

rotation in Section 3.3.2, we mentioned that if the rotations were known, we could match the

object by shifting the orientation parameter� by the corresponding amount.

Since the rotation is unknown, we could adopt an approach similar to the scale invariance

and de�ne an intrinsic orientation. However, the common approaches for computing the in-

trinsic orientation are based on the global maximum of the histogram of gradient orientations

[70], a procedure that is very sensitive to noise and small image variations. Instead, we prefer

to match all possible orientations, a procedure that is more demanding computationally, but

very robust. We address the rotation invariance by matching all possible feature vectors

shifted in the orientation parameter and choosing the� -shifted vector that is the closest to

the object component model.

Summarizing the procedure to match a feature vector in a scaleand rotation invariant

manner, we compute:

1. the feature vector parameters ^� max
l;j and f̂ max

l;j ; j = 1; 2; l = 1; : : : ; L, using the intrinsic

scales, as shown in Equation (3.20).
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2. rotated versions of the feature vector and �nally picking the closest vector to the model.

3.5 Tests

We perform detection and location of facial components. The tests aim to: (i) verify if the

adaptive Gabor bank object component model is able to correctly classify an image pixel,

(ii) verify the rotation invariance of the object componentmodel, and (iii) verify the scale

invariance of the object component model.

We perform an additional test in order to illustrate the e�ect of the top-down saliency

function introduced in Chapter 2 on the performance of the local descriptor presented in this

chapter. We evaluate the e�ect of the interest point selectiondone by the top-down saliency

modelSMc on the object component classi�cation, using the adaptive Gabor bank descriptor

to match the facial components in new images.

We use 82 subjects from the AR face database [77], where half of them are used for learning

the model of �ve facial components and the remaining half forthe component classi�cation.

We consider left eye, right eye, nose, left nostril, and right nostril as the facial landmarks.

The object component model is learnt in a supervised manner andthe model is computed in

ground truth points.

3.5.1 Classi�cation of object components

In the training stage we compute the model (� u c ; � c) of a facial component. Then, in the

matching stage we compute the Mahalanobis distance between the facial component model

and the local descriptoru(x; y) at image point I (x; y). In order to classify the pixel (x; y) as

facial componentc, we utilize the chi-squared test con�dence probability to accept or reject

the local descriptoru(x; y) being drawn from the facial component model's distribution. The

chi-squared test relates the feature vector size (\degrees of freedom") and the Mahalanobis

distance value to a con�dence probability value. Thus, we can accept or reject a local descrip-

tor u(x; y) with a certain con�dence by choosing the correspondent Mahalanobis threshold.

The retrieved image points are those below the Mahalanobis distance threshold and those

points are marked as facial components. To quantify the performance in facial component

classi�cation, we compute recall and precision for each facialcomponent

recall =
# correct hits

# true positive components
;

(3.21)

precision =
# correct hits
# total hits

: (3.22)
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The recall rate of Equation 3.22 represents the number of object components detected

correctly, so a feature vector with maximum recall will not miss any component. The precision

rate represents the number of matches (hits) that �nd object components, so a feature vector

with maximum precision will not �nd false positive matches.

We set the con�dence threshold to 99:9% and compute the Mahalanobis distance in the

test set images. We mark a hit if there is a facial component foundwithin a circle of radius

r = 4 pixels around the groundtruth component location. The hits located outside the

groundtruth proximity circle are marked as false positives. Table 3.3 presents the results

when classifying pixels as eye center, nose center, and nostril center.

Facial Point Recall(%) Precision(%) 130� Rot Recall

Left eye 100 64.36 97.56
Right eye 97.56 50.33 97.56

Nose 92.68 79 92.68
Left nostril 87.8 60.68 87.8

Right nostril 82.92 72.32 82.92

Table 3.3: Precision and recall rates of facial component classi�cation.

Recall rates in Table 3.3 show the very good recognition capabilities of the adaptive

Gabor �lter-based descriptor. The precision rates reect the amount of false positive detected

components in the images, due to the exhaustive search performed (the entire image). We

will explain in the next section how to improve the precision rates by using the top-down

saliency model.

Scale invariance

To check the invariance to scale transformations, we compute the recall rate in rescaled

images maintaining the object model learned in the originalsize images. In Table 3.4 we can

see the average recall of all facial landmarks.

scale change(octaves) Recall(%)
-0.5 83.19
-0.25 92.19

0 92.19
0.25 92.19
0.5 91.14

Table 3.4: Scale invariance test
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Although we have demonstrated theoretical scale invariance ofthe Gabor response, due

to discretization and sampling e�ects, invariance is not possible for the whole range of scales

in real images. To attain full scale invariance, it is necessary to apply a multi-scale approach,

computing the component model every octave (a very typical value [70]).

Rotation invariance

The rotation robustness of the component descriptor is tested inSection 3.3.2 and the results

plotted in Figure 3.5. In that section we show experimentally that an appropriate circular

shift of the component descriptor is a suitable method to match rotated facial components.

However, the rotation robustness tests sampled angles only contained in the Gabor �lter-bank

parameters.

The procedure to match angles not sampled in the model is presented in Section 3.4.2 and

we illustrate the application of the method by computing the recall rate in the image test

set rotated by the angle 130� , keeping the object model learned in the standard pose images.

The rightmost column of Table 3.3 shows that the recall remainsapproximately constant for

an angle that is not sampled in the model.

3.5.2 Top-down saliency + adaptive Gabor �lter-based descrip tor

This group of tests integrates the saliency model based on the� -signature presented in

Chapter 2 and the facial component classi�cation procedure presented in the previous section.

In the initial stage, the saliency model makes a preselection ofcandidates for every facial

component. Then, at the points selected by the saliency model the local descriptoru(x; y)

is computed, to match components and classify points as components.

The approach of this section adds an extra step to the experimental setup described in

Chapter 2 (Section 2.7.2), the component classi�cation. Considering the additional step, for

every object componentc we perform:

1. Application of the Local maxima of LoG operator at several scales. This procedure

provides an initial set of interest pointsIP = f (x1; y1); : : : ; (xJ ; yJ )g as in Equation

(2.22).

2. Matching of the saliency modelSMc (Equation 2.20) with the scale invariant signature
~� Sx j ;yj (Equation 2.16) computed in the interest point set, keeping interest point loca-

tions with positive matches. The resulting interest point locations form a subset ofIP

and we denote the subset asIP c = f (xc1; yc1); : : : ; (xcs; ycs); : : : ; (xcS; ycS)g.
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3. For every point in IP c, the computation of the �lter-based descriptor u(xcs; ycs) of

Equation (3.16) and classifcation of the interest points using the Mahalanobis distance

with the chi-squared test.

This algorithm reduces the computational complexity during facial component matching.

While the test described in the previous section (3.5.1) computes the adaptive Gabor bank

descriptor at every image pixel, the test presented in this section computes the descriptor in a

selected set of interest points. We see that the top-down saliency model maintains practically

the same recall and improves substantially the precision rate ofthe classi�cation. Comparing

the precision results in Table 3.3vs: Table 3.5, we remark that the top-down saliency function

removes around 10% of false positives that the object component classi�cation method is not

able to label correctly.

Facial Point Recall(%) Precision(%) Precision from Table 3.3 (%)

Left eye 100 74.63 64.36
Right eye 97.56 57.99 50.33

Nose 90.24 100 79
Left nostril 87.8 67.94 60.68

Right nostril 82.92 94.47 72.32

Table 3.5: Top-down saliency and �lter-based description tests

3.6 Discussion

We have introduced an adaptive Gabor bank local descriptor for object components. The

presented descriptor belongs to the sparse type of �lter-based representation, allowing lower

feature vector sizes and more e�cient matching procedures. While common approaches for

Gabor �lter bank descriptors adopt �xed �lter parameters to r epresent local appearances,

we introduce an automatic �lter parameter selection method to compute local descriptors

adapted to the particular object components. The technique for parameter selection is based

on the Information Diagram concept [53] that is extended in this thesis to consider opti-

mization along all dimensions of the Gabor function parameters. The adaptive Gabor bank

descriptor presented is characterized by:

� selection of the Gabor �lter parameters with largest energy torepresent a particular

object component,

� invariance to image rotations, and
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� high tolerance to image scalings.

We have used the adaptive Gabor bank descriptor together with the top-down saliency

model proposed in Chapter 2. The results obtained allow to conclude that the top-down

saliency model:

� reduces the computational complexity of the local descriptor computation and matching

procedure, maintaining recall rates practically equal to the recall rates computed in

entire images, and

� improves classi�cation precision of the adaptive Gabor bank descriptor.

We have explored the sparse �lter-based representations using Gabor �lters, small size

local descriptors with e�cient matching methods. We see that our proposed descriptor

has excellent recall rates, but the precision rates are just acceptable. Thus, it is suited

for applications with constant background, e.g. in human-machine interfaces in controlled

situations. For other types of applications in more general environments, in the next Chapter

we will explore histogram-based methods and propose improvements based again on the

automatic selection of Gabor �lters.



Chapter 4

Histogram-based descriptors

We have proposed a sparse (small size) descriptor using the �lter-based approach, attaining

very good detection results. In order to keep the recognition rates in more challenging appli-

cations such as recognition in cluttered images, it would be necessary to change the descriptor

sampling approach, but maintaining the small size constraint for the descriptors. The ap-

propriate representations that hold these requirements are the histogram-based descriptors,

the subject of study in this chapter.

Histogram-based methods for computing local image descriptorsfollow a sequence of

steps: (i) The initial step is to select interest points in the scalespace (e.g. Hessian, Harris)

and compute the image gradient in the neighborhood of interest points (e.g. pixel di�er-

ences, Canny detector); (ii) the descriptor is then obtained by splitting the interest point

neighborhood into smaller regions (e.g. cartesian grid, log-polar grid), and (iii) �nally for

every subregion the histogram of the gradient orientation is computed with an appropriate

information selection procedure (e.g. weighting, PCA).

To date, the most remarkable descriptor in terms of distinctiveness is the SIFT local

descriptor [70], which computes the image gradient from pixel di�erences, subdivides the

interest point regions in a cartesian grid, and for each subregion, computes the gradient ori-

entation histogram weighted by the gradient magnitude. The descriptor is the concatenation

of all subregion's histograms, followed by a unitary normalization.

In this chapter we present an alternative approach for gradient computation using smooth

derivative �lters. In scale-normalized image regions, gradient computation using pixel di�er-

ences, as in [70], is quite sensitive to noise and other artifactsinduced by the image sensor

and the normalization procedure. One common approach to diminish the noise sensitivity is

to compute smoother approximations of the image derivativesusing �lters. We use Gabor

�lters, which have been shown to approximate any image directional derivative [58], by suit-

ably tuning their parameters. We propose a methodology to de�ne the �lters' parameters

63
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based on local maxima of the magnitude of the �lter response. We analyze the response for

several �lter widths, selecting the width in which the local maximum is located [90].

Using Gabor functions as smooth �lters, our approach improves the distinctiveness of the

SIFT local descriptor. To quantify the impact of our approachwe use the local descriptor

evaluation framework proposed in [83]. Several types of images (natural, structured) and

image transformations (viewpoint, scale, blur, JPEG, illumination) are employed in the eval-

uation process. This evaluation framework is presented in Section 4.1. Then, in Section

4.2 we present our approach based on the SIFT descriptor and Gabor parameter selection

for gradient computation. Section 4.3 shows results of the comparison between our method

and the original SIFT descriptor, under the framework presented in Section 4.1. Finally, in

Section 4.4 we draw some conclusions.

4.1 Local descriptor evaluation

In this section we describe the main steps of the framework proposed in [83] to compare local

image descriptors. The method can be summarized as follows:

1. Several image pairs are used for evaluation, each having a particular type of image trans-

formation (blur, view-point, illumination, JPEG compression, and zoom+rotation).

Each pair is obtained by taking two pictures of the same objectin di�erent conditions

(position, camera/image settings).

2. For each pair a projective transformationH between the two images is computed by

standard homography estimation methods. Corresponding regions between images are

called covariant.

3. Salient image regions are computed using invariant regiondetectors, like the Harris or

Hessian detectors. This process outputs elliptic regions in the two images that are good

candidates for posterior matching. Knowing the ground truthprojective transformation

H between the images, acorrespondence testis proposed to evaluate the quality of the

invariant image detection process.

4. Candidate image regions are normalized for a�ne and illumination transformations

using, respectively, the elliptic regions' parameters computed in the previous steps and

image region gray level statistics.

5. Each candidate image region is represented by the several descriptors under comparison.
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6. A matching test determines if two candidate regions (one on each image of thepair)

are similar. Three di�erent matching methods are employed: (i) thresholded euclidean

distance between the two descriptors, (ii) nearest-neighbor, and (iii) nearest-neighbor

distance ratio. Based on the ground truth data, matches are classi�ed as correct or

false.

7. As in the previous chapters, an evaluation metric is de�ned,based on precision (ratio

between correct matches and all matches) and recall (ratio between correct matches

and correspondences).

In the following sections we provide additional details on each of these steps. We start, in

Section 4.1.1, by describing the types of images employed in the tests and the homography

computation for the generation of ground truth data. In Section 4.1.2 we focus on the

computation of salient image regions with several invariant region detectors. The local region

normalization, descriptor computation and matching procedures are detailed in Section 4.1.3,

and �nally, the computation of the overall evaluation metric (recall vs. 1� precision curves)

is described in Section 4.1.4.

4.1.1 Image data set

Figure 4.1 shows the test set images used to perform the local descriptor evaluation. These are

the same as used in [83] for the sake of comparison with the other methods. For each image,

one of �ve possible image transformations is applied: Zoom + rotation, viewpoint, image

blur, JPEG compression, and illumination. For viewpoint transformations, scale + rotation,

and image blur, two classes of images are considered: (i)natural images containing a large

amount of randomly oriented textures, and (ii)structured imagescontaining many distinctive

long edge boundaries. In the case of JPEG compression and illumination transformations,

only images from thestructured type are employed.

An image pair is created for each transformation, containing both the reference image and

the transformed image. In the viewpoint (locally a�ne) transformation, the camera position

moves from a fronto-parallel view to one with foreshorteningat 40 degrees to the camera.

In the scale transformation, the scale factor is changed for 1.9in the image of Figure 4.1(a)

and 2.5 for Figure 4.1(b). In the image blur transformation, the focus ratio between the

reference and transformed image is 4. The JPEG transformationkeeps 10% of the quality of

the original image. The illumination transformation variesthe camera aperture by a factor

of 4.

For the generation of ground truth data (computing the correct matches between the

two images), each pair of images is related by a homography. The homography is computed



66 CHAPTER 4. HISTOGRAM-BASED DESCRIPTORS

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: Data set used for local image descriptor evaluation. Zoom + rotation 4.1(a) and
4.1(b), viewpoint 4.1(c) and 4.1(d), image blur 4.1(e) and 4.1(f), JPEG compression 4.1(g)
and illumination 4.1(h)
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in two steps: (i) a �rst approximation is obtained using manually selected points, then

the transformed image is warped with this homography, and (ii) a robust small baseline

homography estimation algorithm is used to compute the residual homography between the

reference image and the warped one.

4.1.2 Invariant region detectors

The following detectors have been considered \appropriate"for region matching. We will use

them in our tests:

� The Harris-laplace detector [80] computes local maxima of acornernessmetric using

the scale adapted second moment matrix [67] to �nd initial candidates. Then for

every candidate, it is checked if there is a local maximum in scale of the normalized

Laplacian of Gaussian. The regions detected are corners and junctions covariant to

scale and rotation changes.

� The Hessian-laplace detector [70, 82] computes the local maxima of Hessian operator to

locate candidates spatially. Candidates that attain local maxima in scale of normalized

Laplacian of Gaussian are selected as interest regions. The method provides blobs and

ridges covariant to scale and rotation changes.

� Harris-a�ne detector [82] is an a�ne extension of Harris-laplace. The �nal step is to

compute the shape adaptation matrix [67] to perform an a�ne normalization. The

regions detected are corners and junctions covariant to a�ne transformations up to a

rotation factor.

� Hessian-a�ne detector [84] is an a�ne extension of Hessian-laplace. The �nal step

is to compute the shape adaptation matrix [67] to perform an a�ne normalization.

The regions detected are blobs and ridges covariant to a�ne transformations up to a

rotation factor.

These methods provide not only the localization of the salientregions but also geometrical

information regarding the intrinsic scale of the image region. Then, the region's dominant

orientation is obtained by selecting the peak of the gradienthistogram. With this information,

each image region can be associated to an ellipse (R� ) representing its dominant shape.

To evaluate the quality of the region detectors, a correspondence test is de�ned. Two

image regionsR� a and R� b are corresponding if the overlap error is less than threshold� 0,

1 �
R� a \ RH T � bH

R� a [ RH T � bH
< � 0: (4.1)
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In the previous equationR� is the elliptic region de�ned by xT �x = 1, where � has the

ellipse parameters, andH is the homography between images. For all tests performed in this

chapter, we have �xed� 0 = 0:5.

4.1.3 Local image descriptors

To represent the detected regions in a suitable way for matching, an extended description of its

photometric properties must be provided. Before computing the local descriptors, every local

image region must be normalized for invariance to a�ne transformations and illumination.

Geometrical normalization is done using the region ellipticparameters, computed in the

previous step and illumination normalization is obtained byperforming a contrast stretching

using the mean and standard deviation of the region's gray values.

After region normalization and descriptor computation, the matching step evaluates the

similarity between the descriptors (feature vectors) of imageregions. Three matching proce-

dures are compared: threshold-based, nearest neighbor, and nearest neighbor distance ratio.

In the case of threshold-based matching, two descriptors (feature vectors) ua and ub are

matched if the Euclidean distance is below a threshold. In the case of nearest neighbor,

a match exists if ub is the nearest neighbor toua and the Euclidean distance between de-

scriptors is below a threshold. In the case of nearest neighbor distance ratio, we have the

descriptor ua, the nearest neighborub, and the second nearest neighboruc. The descriptors

ua and ub are matched ifjjua � ubjj=jjua � ucjj < t . The threshold-based method may assign

several matches to the same descriptor, while the other two methods assign one match only

to each descriptor.

4.1.4 Overall evaluation

The overall matching process cascades two main phases: detection of salient points and

matching the regions' descriptors. To evaluate the overall matching process, arecall versus

1 � precision curve is computed for each image pair. The recall of the regions detected in

two images is de�ned as:

recall =
# correct matches

# corresponding regions
: (4.2)

The ratio between false matches and the total number of matches is given by 1� precision

value:

1 � precision =
# false matches

# correct matches+ # false matches
: (4.3)
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After completing the steps of Equations (4.2)-(4.3) above, one is able to compare the matching

performance of any local descriptor using therecall versus 1� precision curve. A perfect

descriptor would giverecall = 1 for any precision. So the descriptor with largest area in the

recall vs. 1� precision curve is considered to have the best performance. In the next section

we describe in detail our local descriptor proposal.

4.2 Improving a histogram-based descriptor using Ga-

bor �lters

In this section we �rst review the SIFT local descriptor computation in a normalized image

region. Then we present a modi�cation of the SIFT descriptor, using odd Gabor �lters to

compute �rst order image derivatives.

4.2.1 SIFT local descriptor

In the original formulation of the SIFT descriptor [70], a scale-normalized image region is

represented with the concatenation of gradient orientationhistograms relative to several rec-

tangular subregions. First, to obtain the scale-normalized patches, a salient region detection

procedure provides image point neighborhoods. The saliency function is computed from the

scale-space of Di�erence of Gaussians (DoG) and the image regions (position and scale) are

selected by the local extrema in the scale-space. In order to compute the local descriptor,

the regions are scale normalized and the derivativesI x and I y of the imageI are computed

with pixel di�erences:

I x (x; y) = I (x + 1; y) � I (x � 1; y)

I y(x; y) = I (x; y + 1) � I (x; y � 1): (4.4)

Then the image gradient magnitude and orientation are computed for every pixel in the

image region:

M (x; y) =
q

I x (x; y)2 + I y(x; y)2 (4.5)

�( x; y) = tan � 1(I y(x; y)=Ix (x; y)) : (4.6)

The interest region is then subdivided in a rectangular grid. Figure 4.2 shows examples of the

gradient magnitude and orientation of an image region and its corresponding 16 subregions.

The next step is to compute for each subregion the histogram of gradient orientation,
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Figure 4.2: Example of gradient magnitude and orientation images

weighted by gradient magnitude. Orientation is quantized into 8 bins and each bin is set

with the sum of the windowed orientation di�erence to the bin center, weighted by the

gradient magnitude:

hr ( l;m )
(k) =

X

x;y 2 r ( l;m )

M (x; y)(1 � j �( x; y) � ck j=� k); �( x; y) 2 bin k; (4.7)

where ck is the orientation bin center, � k is the orientation bin width, and (x; y) are pixel

coordinates in subregionr (l;m ) . The SIFT local descriptor is the concatenation of the several

gradient orientation histograms for all subregions:

u = ( hr (1 ;1)
; : : : ; hr ( l;m )

; : : : ; hr (4 ;4)
) (4.8)

The �nal step is to normalize the descriptor in Equation (4.8) to unit norm in order to reduce

the e�ects of uniform illumination changes.

The gradient orientation is not invariant to rotations of the image region. To provide

orientation invariance, Lowe proposed to compute the orientation of the image region and

set the gradient orientation relative to the region's orientation. The orientation of a region

is given by the highest peak of the gradient orientation histogram of the image region.

We have based our work on an approach similar to the one describedhere. However, the

gradient computation in the original SIFT descriptor is donewith pixel di�erences which

are very sensitive to noisy measurements and not adapted to the natural scale of edges in

the normalized region. In next section we explain an alternative way to compute the image

derivatives of Equation (4.4), using Gabor �lters with properly tuned parameters.
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4.2.2 Gabor functions as smooth image derivative �lters

The computation of image derivatives with pixel di�erencesis an inherently noise sensitive

process. Pixel di�erences implement ahigh-pass�ltering operation on the image spectrum,

amplifying the high frequency range, which is mainly composed by noise. To avoid such

sensitivity, it is common to combine alow-pass�lter (image blurring or smoothing) with

the high-passderivative �lter, resulting in a band-pass�lter, which we denote by smooth

derivative �lter . This e�ect can be implemented by either pre-smoothing the image followed

by the derivative computation, or by convolving the image with a band-pass�lter combining

both phases. The important question to address at this point is \how much blurring should

we apply to the image ?", or equivalently, \which frequency band should theband-pass �lter

focus on ?"

Several smooth derivative �lters have been proposed for image�ltering. Both Gaussian

derivatives [58] and Gabor �lters [38, 21] are common choices because of their properties

and the availability of fast computation methods [123]. Gaussian derivatives [58] are smooth

�lters that can compute the image derivatives of any order. They have good noise attenuation

properties due to an implicit image Gaussian �ltering. In Figure 4.3 we show examples of the

Figure 4.3: Examples of Gaussian �rst order kernel in thex direction for
� = f 2

p
2=3; 4=3; 4

p
2=3; 8=3; 8

p
2=3; 16=3g.

Gaussian �rst order derivative kernel. We use Gabor �lters for the computation of smooth

image derivatives due to the following facts:

� With appropriate parameters, odd Gabor �lters can approximate odd-order Gaussian

directional derivatives [58].

� Gabor �lters have a larger number of parameters than Gaussian derivatives, thus be-

ing more easily customized to each particular purpose [101, 22,122, 75, 68, 50, 24].

Previous works have shown the advantage of Gabor �lter parameter selection in edge

computation [93, 124] by de�ning an edge threshold criterionbased on Gabor �lter

parameters.

Notice that the �rst fact listed above tells us that the best performance with Gaussian deriv-

ative �lters can also be achieved with Gabor �lters, and the second fact suggests that a more
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careful parameter tuning of the Gabor parameters may possiblylead to better performance.

4.2.3 Gabor �lters for image derivative computation

Gabor functions are de�ned by the multiplication of a complex exponential function (the

carrier) and a Gaussian function (the envelope).

gx;y;� =
1

2�� 1� 2
�exp

�
�

(x cos� + y sin� )2

2� 2
1

�
(y cos� � x sin� )2

2� 2
2

�
�exp

�
i
2�
�

(x cos� + y sin� )
�

(4.9)

In the previous expression, (x; y) are the spatial coordinates,� is the �lter orientation, � is

its wavelength, and� 1 and � 2 are the Gaussian envelope standard deviations, oriented along

directions � and � + �= 2, respectively.

To compute the �rst order image derivativesI x and I y we will use the odd (imaginary)

part of the �lter. The orientations will be � = 0 and � = �= 2 for, respectively, the horizontal

and vertical derivatives. To approximate the shape of an odd Gabor Filter to that of a

Gaussian derivative, we set� 1 = � 2 = � and we introduce ~� = �=� , a variable that is

proportional to the number of wave periods within the �lter width. By �xing an appropriate
~� value, we will obtain an expression of the Gabor �lter with a single parameter, the �lter

width � .

If we look at the shape of the �rst order Gaussian derivatives at any scale in the derivative

direction, there is one wave period within the spatial supportof the �lter, which roughly

corresponds to� = 6� . Replacing this value in~� = �
� yields ~� = 6. By replacing � = � 1 = � 2

and ~� = 6 in Equation (4.9), we obtain the �lter being used in the remainder of the chapter:

gx;y;� (� ) =
1

2�� 2
exp

�
�

x2 + y2

2� 2

�
� sin

�
2�
6�

(x cos� + y sin� )
�

; (4.10)

where � = 0 computes I x , and � = �= 2 computesI y. The choice of� will be done by an

optimization procedure, based on the �lter energy at locations with high gradient magnitude.

4.2.4 Scale selection

In this section we propose a methodology to select a value for thescale parameter� , such

as to maximize the energy output of the smooth derivative �lters in the analysis of the

normalized regions obtained in the interest point selection procedure. We notice that, at this

point, we have image regions that are already scale-normalized, therefore the scale-selection

procedure we are proposing here should choose one single scale value for all regions.

Figure 4.4 shows examples of the odd Gabor �lter to compute theI x at several� values. In
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Figure 4.4: Examples of odd Gabor functions at� = 0,  = 6, and
� = f 2

p
2=3; 4=3; 4

p
2=3; 8=3; 8

p
2=3; 16=3g.

order to select the best scale, we will use the gradient magnitudeover all selected features in

all images in the data set, due to its key role of weighting the gradient orientation histogram

in the SIFT computation. In fact, the scale-normalized gradient magnitude has been used to

measure edge strength in scale-space [64]. However, this measure is not very stable at large

scales, sometimes leading to the selection of scale values higherthan the actual feature scale

[64]. This problem has been addressed in the context of edge scale selection [65], using the

concept of -normalized derivatives.

We have made some preliminary test with this methodology, but the results were not

promising, mainly because the features obtained in the interest point selection phase are not

only edges, but also blobs, corners, junctions, and other structures. Additionally, the image

regions we are considering are already scale-normalized, so the scale selection procedure is

a local search, as opposed to -normalized derivatives in [65]. Therefore, we propose the

following methodology to avoid the bias toward large scales in the scale-normalized gradient

magnitude by:

� considering independently the components of the normalizedgradient magnitude, and

� biasing the scale selection criterion to smaller scale values foreach component, to avoid

the non-decreasing behavior of the normalized derivatives for large scales [64].

Following these criteria, we pick the Gabor �lter with largestenergy in thex and y directions

and, from these, we select the smaller scale:

�̂ x = arg max
�

j(I � gx i ;yi ;� =0 (� )) j

�̂ y = arg max
�

j(I � gx i ;yi ;� = �= 2(� )) j

�̂ (x i ; yi ) = min( �̂ x ; �̂ y);

I x (x i ; yi ) = ( I � gx i ;yi ;0(�̂ ))( x i ; yi )

I y(x i ; yi ) = ( I � gx i ;yi ;�= 2(�̂ ))( x i ; yi ): (4.11)
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where (x i ; yi ) is a point in the scale-normalized region, and ^� is the adequate �lter width at

position (x i ; yi ).

Computational complexity

The local minima selection of Equation (4.11) has an obviouslyhigher computational com-

plexity than the pixel di�erence of Equation (4.4). In a scale-normalized image of sizeS � S,

the complexity of the pixel di�erence and �ltering is O(S2), while the odd Gabor scale selec-

tion of Equation (4.11) has a complexity value of

O(S2 � (C � F + 2F + 1)) ; (4.12)

whereC is the number of operations per pixel to compute the response ofone Gabor �lter

and F is the number of Gabor �lters applied. Using the state-of-the-art fast implementation

of Gabor �lters, C = 601 operations per pixel [6, 7], andF depends on the type of multi-

scale implementation and the size of the normalized region. As we are dealing with scale-

normalized regions, the search alongF scales of Eqs. (4.11-4.11) can be replaced by a single

scale suitable for all normalized images, thus yielding a complexity of O(S2 � C).

4.3 Experimental results

First we address the selection of a single scale value of the Gabor �lter suitable to compute the

image derivatives for all image regions. Then, we present the results of image region matching

experiment and evaluate the advantages of smooth derivative�lters in SIFT computation.

4.3.1 Gabor �lter scale selection

Aiming to reduce the computational complexity presented in Equation (4.12), we select a

single �lter suiting all cases. The single �lter selection reducesthe complexity of the image

derivative computation from O(S2 � (C � F + 2F + 1)) to O(S2 � C). We compute the

relative frequency (i.e. histogram) of the �lter width �̂ in Equation (4.11), using all the

scale-normalized image regions of the image data set presentedin Figure 4.1. To avoid

noisy �̂ values, we pick pixels with gradient magnitude above a certain threshold. We plot

the marginalized (structured and textured) histograms and the total histogram in Figure

4.5. When comparing structured versus textured images, we observe that in the case of

textured images the bins located at the left side of the histogram peak are all larger than the

1Considering an isotropic and non-zero mean Gabor �lter implementation
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Pixel di�erence of Eqs. (4.4-4.4) 0.44 ms
Multi-scale optimization (Gabor) of Eqs. (4.11-4.11) 9.75 ms

Single scale (Gabor) of Eqs. (4.13-4.13) 1.01 ms

Table 4.1: Execution time of C implementations, in a Pentium 4, 2.80 Ghz. Average value
of the x derivative computation for all the normalized regions (size:41� 41) selected in the
images of Figure 4.1.

equivalent bins in the structured images histogram. This is anexpected behavior because the

high gradient magnitude points in very textured images havea very small spatial support,

while in structured images the points with high gradient magnitude have a larger spatial

support. We also notice the di�erence of peak location betweenstructured (�̂ = 1:88) and

textured (�̂ = 1:58) images.

Although we biased the �lter width selection to small values usingEquation (4.11), it

still will select high �lter width values in some of the image points (around 10% of image

pixels), blurring the image gradient in some regions. This behaviour would lead to the loss

of important histogram information in some subregions. In orderto avoid these high �lter

width values, we select the peak of the ^� histogram in textured images (Figure 4.5).

I x (x; y) = ( I � gx;y; 0(1:58))(x; y)

I y(x; y) = ( I � gx;y;�= 2(1:58))(x; y): (4.13)

Equation (4.13) provides a fast approximation of the scale selection of Equation (4.11),

keeping the advantage of a smoother image derivative approximation versus the pixel di�er-

ences of Equation (4.4). In the next sections we present the performance improvement of

the SIFT descriptor by using Equation (4.13). However, we pay the price of performance

improvement by increasing the computational load of the image derivative computation, as

shown in Table 4.1. Despite that the theoretical complexity analysis indicates a 60 times

slow down with our approach, in practice we veri�ed that it only slows down 2-3 times, thus

maintaining a real-time functionality. The explanation may be related to the pixel access

times to perform the subtraction, that were not considered in the theoretical analysis. Ad-

ditionally, the �xed computational cost of the image normalization will further smooth out

the di�erences between the two methods.
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Figure 4.5: Histograms of ^� for various image types.
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4.3.2 Image region matching

In this set of tests, we computerecall vs 1 � precision curves for all types of: (i) image

transformations, (ii) image detectors, and (iii) structured and textured images. We show

in Figures 4.6-4.7 samples of therecall vs 1� precision curves, remarking that the curve

of our descriptor is always located above the original SIFT curve for the threshold-based

criterion. We notice a similar behavior for all experiments (in appendix B), improving the

SIFT matching performance by the utilization of smooth derivative �lters (Gabor �lters).

4.3.3 Discussion

In order to evaluate quantitatively the improvement of our descriptor over the original SIFT

descriptor, in every experiment we compute the di�erence in recall rate for a �xed precision

value of 0.5. We see in Table 4.2 that our method for computing SIFT local descriptor

improves SIFT distinctiveness for all the matching experiments. It is also important to note

that the improvement attained by our descriptor depends on: (i) type of detector and (ii)

matching criterion. In the case of detectors, Hessian detectors have a improvement greater

than Harris detectors for every matching criteria. Also the improvement depends highly

on the matching criterion, as recall improvement in the threshold-based method is about 10

times larger than the improvement in the nearest-neighbor methods. This di�erence is related

to the di�culty of improving the performance of the nearest-neighbor methods, because it

demands a high precision rate with very few correspondences.

Harr Hess Struc Text Total
Threshold 2.7 4.3 3.7 2.3 3

NN 0.36 0.75 0.59 0.56 0.54
NN ratio 0.23 1.33 0.5 1.02 0.68

Table 4.2: Mean value of the recall di�erence (%) between ourSIFT descriptor and original
SIFT [70], at precision = 0:5

4.4 Conclusions

In this chapter we have presented a modi�cation of SIFT descriptor based on odd Gabor

�lters as smooth derivative �lters. The modi�cation proposed computes the �rst order image

derivatives using odd Gabor �lters as convolution kernels. The �lters' parameters are selected

by maximizing the �lter response at locations with high image gradient. To evaluate the
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Figure 4.6: recall vs. 1� precision curves of Harris-a�ne regions matched using textured
images in Figure 4.6(d), related by a viewpoint transformation.
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Figure 4.7: recall vs. 1� precision curves of Hessian-laplace regions matched using structured
images in Figure 4.7(d), related by a scale + rotation transformation.
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performance of our descriptor we use the Mikolajczyk and Schmid framework [83], computing

recall vs. 1� precision curves of image regions matched by local descriptors. Our descriptor

improves the SIFT distinctiveness in average.

The results of the image region matching experiments show thatdistinctiveness improve-

ment is highly dependent on: (i) the matching criterion and (ii) the interest point detector.

We obtain the best improvement results using the threshold-basedmatching criterion and

Hessian-based interest point detectors.

We show experimentally that our descriptor proposal improves the performance in the

single image region matching task. In the next chapter we will evaluate its performance in a

full object recognition scenario.



Chapter 5

Object recognition experiments

In this chapter we use state-of-the-art recognition methods based on object components

to validate, in a full recognition system, the component selection and matching methods

proposed in the previous chapters [91]. We do not aim to proposenew methods for object

recognition, but perform comparisons between di�erent types of object component detectors

and descriptors.

Component-based object models have been shown to perform wellin cluttered scenes and

enjoy nice properties such as invariance to rigid transformations and robustness to partial

occlusion and non-rigid transformations. Objects are represented as the collection of their

parts [70, 62, 47, 1, 114, 4, 29, 30] and each part is modeled bya local descriptor. Then, the

overall object model is built either by the concatenation ofthe appearance of each part (i.e.

appearance-only model) [96, 109] or considering the pose between components (i.e. shape-

and-appearance model) [33, 47]. The experiments conductedin this chapter consider both

types of models.

To represent an image category, the appearance-only models select a set of descriptors

from training images containing objects in that category. Often, because it is a tedious

process, no object segmentation is performed in the training images. The model uses both

foreground (object) and background data and can be seen as an \object+context" represen-

tation. We adopt the model presented in [109] that considers object categorization as a two

class problem (object samples vs. no object samples). The number of local descriptors that

represent the category is a parameter of the learning algorithm. We consider nine di�erent

object classes: airplanes, cars (lateral view), cars (rear view), camels, faces, guitars, leaves,

leopards, and motorbikes.Google thingsis used as the no-object (background) category (neg-

ative examples). We employ AdaBoost and SVM learning algorithmsto estimate the class

models and perform recognition. The local descriptors used inthese tests include SIFT [70],

HMAX [103], and the SIFT improvement introduced in Chapter 4.

81
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Shape-and-appearance models consider both the geometric con�guration of the compo-

nents and their appearances. In our tests we will use the pictorial structure model of [47]. It is

a probabilistic approach that models the objects using a star-like graph model whose vertices

represent object components and edges represent the relativeposition between components.

This model allows object translations and is robust to small scalings, but it is not fully in-

variant to object rotations and scalings. We apply the pictorial structure in a face detection

task to evaluate the techniques previously presented in this thesis: (i) the top-down saliency

model, (ii) the adaptive Gabor �lter bank, and (iii) the Gabor-based SIFT descriptor.

Additionally, we compare the adaptive Gabor descriptors proposed in this thesis against

the state-of-the-art, the HMAX [103] features. We compare the result of the recognition

procedures, including not only the recognition performances, but also the in the computa-

tional complexity, which may be a factor to take into accountwhen deciding on a recognition

method in particular applications.

We start with a brief review of the state-of-the-art approaches for component-based object

recognition.

5.1 Component-based object models

To select appropriate object models for the experiments we review briey the state-of-the art

literature and evaluate qualitatively the di�erent approaches in the �eld.

Early approaches to object recognition model the object by its contours [71, 48, 104].

These approaches are able to cope with image a�ne transformations and have been shown

to be computationally e�cient. However, these approaches have two serious caveats: (i) they

assume that contours of objects can be reliably found in the images, which is not often the

case in natural images, and (ii) since they rely on the boundaries, they neglect important

information contained in the object's interior.

Instead, most of the recent approaches have adopted a component-based approach [10,

121, 70, 62, 47, 1, 114, 4, 29, 30]. The appearance of each component can be combined in

two distinct ways: (i) disregarding geometric relations between components (i.e. appearance-

only) and (ii) using pose between object components (i.e. shape-and-appearance). In both

cases, most of the works propose probabilistic approaches to combine component appear-

ances and build the object model. Probabilistic approaches have been preferred over other

techniques due to their ability to compute a con�dence valueof the object detections and

the availability of machine learning methods using such approaches.
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5.1.1 Appearance-only approaches

Appearance-only models combine information of a large number of local descriptors in a bag-

of-features approach and have been shown to be robust to occlusion and other noise sources.

Additionally, this approach allows to use both foreground (object) and background (context)

data to model each object category. Since these methods do notconsider the pose between

parts, it is di�cult to obtain a precise estimate of their locati on in the images. The most

remarkable examples of the appearance-only approach are:

� \Bag of keypoints" [19]. A bag of keypoints corresponds to a cluster in the local

descriptor space. The object model consists of a histogram that counts the number

of occurrences of clusters for a given class. The main contribution of this work is the

experimental demonstration of visual categorization using appearance only.

� Boosting of local descriptors [96, 97]. Opelt et al. present a new version of boosting in

which the weak classi�er is replaced by a weak-hypotheses-�nder. The weighted sum

of all weak-hypotheses provides the �nal classi�cation. The main contribution of this

work is a new boosting algorithm that uses di�erent kinds of local descriptors to classify

objects.

� The kernel recipe to apply Support Vector Machines (SVMs) withlocal descriptors

[119]. Wallraven et al. propose kernels that guarantee the linearity of the SVM classi-

�cation function (Mercer kernels). The main contribution of this work is the de�nition

of kernels to apply the linear SVM in non-linear feature spaces.

� Cortex-like local descriptors [109]. The main contributions of this work are: (i) a new

general framework for object recognition, which is highly motivated by biology, and

(ii) the versatility of the di�erent levels of the hierarchy t o perform a wide range of

recognition tasks such as scene understanding, multi-class categorization, and single-

object recognition.

5.1.2 Shape-and-appearance approaches

Shape-and-appearance models consider both the geometric con�guration of the components

and their appearances. In its original form [33], the model consists of a set of templates (i.e.

parts, appearance, local descriptors) arranged in some geometric con�guration (i.e. struc-

ture). Object deformations can be modeled as a series of springs connecting the individual

parts. The goal of the model is to minimize a cost function with two terms: parts matching

and deformation. Several works have adopted this idea, proposing various alternatives for
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both terms of the cost function. In the following, we review the most remarkable works using

this approach:

� A�ne invariant object detection and location [70] based on SIFT features [69]. An

initial interest point set is provided by local maxima in space and scale of the Di�erence

of Gaussians (DoG) operator. Appearance is represented by the histogram of image

gradient orientations at interest point neighborhoods. Shape is modeled by the interest

point locations in the training image. The main contribution of this work is the real-

time and very robust performance in matching objects, mainly in the �rst two main

stages, the interest point detection and local appearance computation.

� Weakly supervised scale invariant object recognition [29]. Fergus et al. revisited Fis-

chler and Elschlager's model [33], proposing a model that considers jointly the location,

scale, and appearance of every object component as parameters to estimate. Given a

training set with labeled images (object/no object), the parameters are learnt in an

unsupervised manner, using the expectation maximization (EM)algorithm. The main

contributions of this work are: (i) unsupervised and joint learning of appearance, lo-

cation and scale parameters, and (ii) the addition of component scale to the object

model.

� E�cient learning and exhaustive recognition [30]. Later Fergus et.al. explored several

variations of the constellation model in order to address previous short-comings: (i)

the joint nature of shape model results in an exponential explosion in computational

cost, (ii) good performance is highly dependent on the interest point detection phase,

and (iii) the model has many parameters, so the number of training images must be

large. The main contribution of this work is the reduction ofcomputational complexity

that allows to: (i) model objects with several (more than six) components, (ii) perform

e�cient learning in terms of computation time, and (iii) per form exhaustive recognition

by removing the interest point detection stage.

� Pictorial structures [47]. The main contribution of this work is the reduction of com-

plexity when matching the model by: (i) using a star-like graph(i.e. tree) instead

of an unconstrained graph, and (ii) using the generalized distance transform [105] to

e�ciently compute the model probability.

� Weakly supervised learning of part-based spatial models [17]. This work is a gen-

eralization of pictorial structures [47] in two aspects: (i) the star-like graph model is

generalized to ak-fan model, a graph with a central clique ofk reference nodes, with the

remaining nodes connected to allk reference nodes, but to none of the non-reference
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nodes, and (ii) both the appearance model and shape model are learnt jointly in a

weakly supervised manner (object label, but no segmentation).The main contribu-

tion of this work is the proposal of a weakly supervised learningof an object model,

computing appearance and shape jointly in a graph model.

� Multiple object detection [79]. Objects are modeled by a joint distribution of shape and

appearance, computed in a hierarchical manner. The contributions of this work are:

(i) the capability of detecting multiple object classes simultaneously, and (ii) the com-

plexity and run times are improved compared to other object recognition approaches.

� Sharing features for multi-class and multi-view object detection [114, 115]. This work

shows that sharing simple features (image patches, binary spatial masks) across classes

attains very good recognition rates. The main contribution of this work is the reduction

of the number of features while maintaining very high recognition rates in multi-class

problems.

5.1.3 Qualitative comparison of object models

Appearance-only methods have shown very good recognition rates, even though the poses

between object components are not utilized. Their robustnessto occlusions and non-rigid

transformations allows their application in cluttered images with objects in several con�gu-

rations. The main drawback of appearance-only methods is thedi�culty of locating objects.

However, in particular object categories it is possible to givea crude estimate of the object

location, provided by a bounding box that separates object from background. Another issue

to consider is the amount of foreground (object) and background data contained in the model.

Learning object models in unsegmented images can lead to a \background model" instead of

\object model," as reported by Opelt et. al. [97]. However, this problem is common to all

methods that do not perform a pre-segmentation of the object parts in the training set.

Amongst all appearance-only models, the Cortex-like mechanisms for object recognition

[109] have shown very good performance and versatility in several kinds of visual tasks.

Additionally, they use a dense Gabor �lter-based representation(HMAX) to compute local

descriptors, which will allow us to compare the performance ofdense (large size) Gabor

�lter-based local descriptors (HMAX) against small size histogram-based descriptors (SIFT)

in object recognition tasks. Thus, we choose the appearance-only object model of Serre

et al. [109]. Within this context, we will compare the following descriptors: the SIFT local

descriptor [70], the proposed version of SIFT using Gabor �lters(Chapter 4), and the HMAX

descriptor [103].
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Regarding shape-and-appearance models, there is a much widerrange of works and dis-

tinct approaches, thus making a qualitative comparison between methods harder. Initial

approaches [63, 10, 121] used appearances only as a mean to reduce the complexity during

the shape matching procedure. Subsequent approaches explicitly included appearance in the

model [29, 30], but resulted in an increased complexity on parameter learning, implying a

huge number of training samples. Recent works tackle these drawbacks by proposing e�-

cient learning and matching probabilistic models such as the \star" graph [30, 47] and the

generalization of the \star" graph to the k-fan model [17]. A very recent work [79] is able to

estimate jointly the appearance and shape distribution parameters and locate multiple in-

stances of several classes in one image. Amongst the shape-and-appearance models reviewed,

the pictorial structure [47] integrates several state-of-the-art properties: (i) the parameters

of appearance and shape probability distributions are estimated jointly, (ii) it is very fast in

computational terms, and (iii) it handles partial occlusionsof the object. Thus, we choose

the Huttenlocher and Felzenszwalb pictorial structure [47] toassess the models presented in

this thesis: (i) the top-down saliency model to make a pre-selection of every face component,

(ii) the adaptive Gabor �lter-bank to represent components, and (iii) the Gabor-based SIFT

descriptor.

We proceed now with a more thorough explanation of the selected methods, followed by

the description of the experimental setup.

5.2 Appearance-only object recognition

Due to the success of the HMAX approach [103] in appearance-only object recognition in

clutter, as well as scene understanding [109], we will adopt a similar architecture for our tests.

First, we will briey revise the method proposed in [109], explained in detail in Chapter 3.

Then, we will explain how this architecture can be adapted toperform not only with the

HMAX features but also with other types of local descriptors. Finally, we will present results

of the application of such architecture in a object recognition problem and compare the

performance of the employed descriptors, namely the originalHMAX and SIFT, our SIFT-

Gabor descriptor, and a baseline cross-correlation method.

The HMAX appearance-only model represents an object class by a large number of ran-

domly extracted patches. The �rst two steps of the HMAX procedure (S1 and C1 maps)

compute, for each pixel in the images, a vector containing thelocal maximum in adjacent

scales of the Gabor �lters responses for the di�erent orientations. Therefore, they provide

the representation with local scale robustness. The third step selects C1 patches that contain

the object or class representation, using images in a training set. The collection of all C1
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patches extracted will provide an appearance-only representation of the object class.

In [109] the selected C1 patches are obtained from a large set ofrandomly selected points

from the class images. The rationale is that, from unsegmented images, is is not possible

to decidea priori where to obtain points in the objects of interest. Only selecting a large

number of points, we will have a reasonable likelihood of selecting points in the object region.

Obviously, the background will also be represented, but if the image set is large, it is likely

that the background is very di�erent in the data set images andconstancy of the object

appearance will bias the representation to include more object related information. Anyway,

even when the background does not change signi�cantly between images (e.g. airplanes,

cars), the data set will provide contextual information that is also useful in the appearance-

only object recognition. In our experiments we will also test selections at bottom-up interest

points computed at DoG local maxima in scale{space.

The remaining steps (S2 and C2 maps) comprise the multi-scale andmulti-orientation

matching steps. Every C1 patch in the collection that represents the object, is matched in

the entire new C1 image, retaining the strength of the most similar point in the image to the

C1 patch under consideration. The maximum similarity value ofeach patch is collected into

a vector, that is used to train a binary classi�er with positive and negative examples of the

object class.

5.2.1 Appearance-only object model

The HMAX model described above employs a particular type of �lter-based dense descriptors

to represent the appearance of an object class. In this section wewant to benchmark the

performance of several di�erent types of descriptors, not onlythe HMAX but also the original

SIFT, our SIFT-Gabor model, and the normalized cross-correlation. One of the peculiarities

of the HMAX recognition architecture is that, instead of directly using the descriptors of

the class in a supervised classi�cation framework, it uses vectorsthat already express some

degree of match between an image and the object class to recognize. Given the success

of this approach in appearance-only recognition, we adopt this idea and adapt the HMAX

recognition architecture to cope with di�erent types of descriptors in a unifying framework.

We also consider an additional step of initial interest point selection oriented in a bottom-up

fashion, introducing an attentional mechanism to avoid performing the computations in the

whole image and thus reducing the computational cost.

The following lines describe the steps of the training methodology:

1. SelectM interest point locations from the training set imagesf I 1; : : : ; I t ; : : : ; I T g. In

[109], all points are processed (full sampling). Additionally,we test interest point
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selection with DoG maxima.

2. Compute local descriptors at the interest point locations:u i , i = 1; : : : ; M .

3. From the considered interest points, randomly pickN of them to model the positive and

negative class samples. The selected local descriptors are denoted byus1 ; : : : ; usn ; : : : ; usN ,

and constitute the appearance{only object class representation. This corresponds to

step 3 in the HMAX model.

4. Compute the class{similarity feature vector V t = [ v1; : : : ; vn ; : : : ; vN ] for each image

in the training set. Pick the descriptorsu i that belong to imageI t and compute the

similarity vn of the descriptorusn

vn =

8
<

:
mini kusn � u i k

2 i = 1; : : : ; M ^ i 6= sn ; u i 2 I t SIFT

maxi maxb;� exp(�  kusn � u i k2) i = 1; : : : ; M ^ i 6= sn ; u i 2 I t HMAX
(5.1)

This corresponds to steps 4 and 5 in the HMAX model.

5. Use similarity vectorsV 1; : : : ;V t ; : : : ;V T with their respective labelc = f 0; 1g in the

learning algorithm.

If we use C1 features as descriptors in step 2 and a full image sampling in step 1, this

methodology is equivalent to the original HMAX [103] and the class similarity feature vector

V t correspond to the C2 features of Serre et al. [109].

After learning the object model, the steps to detect an instanceof the object category in

a new image are as follows:

1. SelectJ interest point locations.

2. Compute local descriptors in the new imageu j ; j = 1; : : : ; J at interest point locations.

3. Createclass{similarity feature vectorV = [ v1; : : : ; vn ; : : : ; vN ] by matching each class

model point descriptorusn against all image descriptorsu j .

vn =

8
<

:
minj kusn � u j k

2 j = 1; : : : ; J SIFT

maxj maxb;� exp(�  kusn � u j k2) j = 1; : : : ; J HMAX
(5.2)

4. ClassifyV as object or background image, with a binary classi�er.

The classi�er will operate on vectors of dimension N. Similarly to Serre et.al. [109], in our

tests we will use SVM and AdaBoost binary classi�ers.
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Figure 5.1: Selected images from each category

5.2.2 Experiments with the appearance-only model

Experiments are performed with a set of image categories provided by Caltech 1 : airplanes

side{view, cars side-view, cars rear{view, camels, faces,guitars, leaves, leopards, and motor-

bikes side{view, plus the Google thingsdataset [30]. For every category, we use theGoogle

things as negative samples. For training we randomly choose 100 imagesfrom the positive

set and other 100 from the negative set. Figure 5.1 shows some sample images from each

category. For all experiments, images have a �xed height of 140 pixels, keeping the original

image aspect ratio and converted to gray-scale format.

The setup of every category recognition experiment requiresthe selection of: (i) a local

descriptor type, (ii) the number of descriptors, and (iii) the learning algorithm. Each ex-

periment is repeated 10 times using di�erent training and testing sets and the evaluation

criterion is the classi�cation performance at the equilibrium point of the ROC curve (i.e.

when the false positive rate is equal to the miss rate), along with the con�dence interval (at

95%). The local descriptors used in this test are:

� original HMAX, as explained in Section 3.2.1.

� HMAX computed at DoG. The �nal three steps of the original HMAX are computed

at DoG interest points. Thus, patch extraction and matching is done at DoG points,

instead of the random procedure of [109].

� original SIFT, as proposed by Lowe [70].

� SIFT non-rotation-invariant (NRI). The orientation normal ization procedure is re-

moved from the original SIFT descriptor.

� SIFT-Gabor. The modi�cation of SIFT descriptor introduced in Chapter 4.

1Datasets are available at: http://www.robots.ox.ac.uk/~vgg/da ta3.html
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� SIFT-Gabor NRI. The modi�cation of SIFT descriptor, removing the orientation nor-

malization.

� Cross-Corr. Normalized cross-correlation

We vary the number of local descriptors that represent an object category,

N = f 5; 10; 25; 50; 100; 250; 500g. In order to evaluate the inuence of the learning algorithm,

we utilize two classi�ers: SVM [98] with a linear kernel2 and AdaBoost [37] with decision

stumps.

Support Vector Machines
Airplane Camel Car-side Car-rear

TF/NF 10 500 10 500 10 500 10 500

HMAX 87.3 , 2.2 95.9 , 1.0 70.4 , 3.1 84.3 , 2.2 87.9, 4.0 98.1, 1.5 93.0 , 1.1 97.7 , 0.8
HMAX-DoG 80.3, 2.6 94.9, 0.8 70.2, 3.9 83.9, 1.4 88.9 , 3.8 99.5 , 0.9 86.6, 1.8 97.0, 0.7

SIFT-Gabor-NRI 70.0, 4.6 84.2, 1.8 59.9, 2.7 66.6, 0.8 73.9, 3.8 78.3, 2.8 71.9, 1.9 84.8, 1.1
SIFT-Gabor 69.6, 4.1 82.8, 2.4 55.4, 3.1 65.3, 2.8 66.7, 5.3 74.9, 4.0 63.4, 2.9 79.2, 2.4
SIFT-NRI 70.2, 2.5 84.9, 2.1 57.5, 2.5 66.7, 1.6 73.4, 2.2 78.3, 3.8 74.1, 2.0 84.0, 2.4

SIFT 67.5, 4.9 82.9, 1.4 57.7, 4.8 64.7, 3.1 68.1, 3.8 72.5, 4.3 63.0, 3.1 78.8, 2.0
Cross-corr 67.5, 3.7 81.4, 1.2 55.2, 4.5 64.5, 2.3 71.5, 2.9 74.9, 3.1 65.1, 3.3 78.9, 1.2

Faces Guitar Leaves Leopard Motorbike
10 500 10 500 10 500 10 500 10 500

79.8, 3.4 96.6 , 0.7 87.1 , 4.0 96.7 , 1.1 88.6 , 3.1 98.3 , 0.6 81.4 , 3.4 95.7 , 0.9 81.9 , 3.4 93.7, 0.9
82.7 , 1.8 96, 0.6 82.9, 4.0 95.9, 0.8 84.6, 2.0 98.3 , 0.9 70.9, 3.9 94.2, 1.3 81.6, 2.3 94.7 , 0.7
81.1, 3.3 87.1, 1.9 70.0, 3.6 82.3, 2.4 78.3, 1.8 85.0, 2.4 64.7, 2.9 74.7, 1.6 64.7, 2.8 75.4, 2.4
75.2, 2.3 83.4, 2.3 69.2, 2.3 73.0, 2.7 72.5, 3.4 83.6, 2.2 66.5, 2.3 75.5, 2.2 61.5, 2.4 73.3, 1.7
80.1, 3.5 86.1, 1.8 69.2, 3.8 80.9, 1.4 77.2, 2.3 85.8, 1.7 65.5, 2.7 78.2, 1.2 64.9, 2.4 73.9, 2.5
72.2, 3.1 83.8, 2.5 71.3, 4.6 75.7, 2.2 71.2, 3.5 83.8, 2.4 68.0, 4.1 78.0, 1.5 58.4, 2.1 71.3, 1.8
72.3, 1.9 82.4, 1.9 72.6, 3.0 78.6, 2.4 67.4, 3.5 82.1, 1.5 60.8, 1.8 67.6, 2.4 61.5, 2.2 70.4, 1.4

Table 5.1: Results for the SVM learning algorithm. (TF: type offeature, NF: number of
features). For each experiment, the mean value and standard deviation of the EEP point of
the ROC curve for 10 repetitions. For every object category and number of descriptor, the
best result is in bold face.

The classi�cation results of the SVM learning algorithm are shownin Figure 5.2, Table

5.1 and Appendix C. We observe in Figure 5.2 examples of the performance evolution as a

function of the number of local descriptorsN , in the case of rigid (airplanes) and articulated

(leopards) objects. For the remaining classes, the corresponding plots arein Appendix C.

To illustrate a global view of the results, we show in Table 5.1 a partial view of all SVM

experiments with N = 10 and N = 500. The best average performances are obtained by

the original HMAX, followed by HMAX computed at DoG (HMAX-DoG), SIFT- Gabor-NRI,

SIFT-NRI, SIFT-Gabor, SIFT, and CrossCorr.

In the case of the AdaBoost algorithm, we show in Table 5.2, Figure5.3, and Appendix

C, the correspondent results. The ranking of classi�ers of AdaBoostis equal to SVM, but in

average, recognition rates of AdaBoost are below SVM.
2Implementation provided by libsvm[13]
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Figure 5.2: Comparison of performance depending on the type and number of features rep-
resenting the images. The classi�er used is SVM.

AdaBoost
Airplane Camel Car-side Car-rear

TF/NF 10 500 10 500 10 500 10 500

HMAX 81, 0.7 94.3 , 1.1 67.7 , 3.3 83.1 , 1.0 84.1, 2.8 94.2, 2.0 90.1 , 5.1 98.3 , 0.7
HMAX-DoG 77.8, 3.6 93.2, 1.3 63.9, 4.5 79.1, 1.8 85.5 , 5.5 96.6 , 1.3 74.1, 15.7 96.4, 1.3

SIFT-Gabor-NRI 71.9, 2.1 82.9, 1.6 60.1, 2.5 64.9, 2.4 73.9, 2.5 69.1, 2.2 72.6, 3.2 83.5, 2.1
SIFT-Gabor 71.4, 3.3 82.7, 1.4 57.5, 3.4 63.3, 1.8 67.6, 4.9 68.6, 2.8 62.8, 3.5 77.0, 2.0
SIFT-NRI 72.0, 2.0 82.6, 1.3 59.3, 2.0 64.9, 1.6 73.4, 3.0 69.6, 2.8 74.6, 2.3 83.5, 2.0

SIFT 69.1, 2.7 81.5, 1.8 56.1, 3.3 64.2, 2.1 67.1, 4.0 65.7, 4.4 61.4, 3.4 77.8, 1.9
Cross-corr 66.9, 3.6 78.1, 1.7 53.1, 2.6 60.6, 2.4 70.5, 3.7 77.3, 3.7 62.4, 2.6 75.7, 2.6

Faces Guitar Leaves Leopard Motorbike
10 500 10 500 10 500 10 500 10 500

77.1, 4.7 94.9, 1.1 83.7 , 7.1 96.6 , 1.0 83.1 , 6.2 97.7 , 0.7 76.8 , 2.8 85.6 , 1.1 74.7, 4.8 92.0, 1.7
74.4, 6.1 95.7 , 1.2 78.0, 6.9 92.7, 1.5 76.0, 4.6 97.0, 0.9 70.2, 5.5 83.1, 2.0 75.2 , 3.7 93.4 , 0.9
80.9 , 2.9 86.1, 2.1 72.4, 3.2 81.0, 2.5 77.6, 1.7 82.5, 1.4 63.5, 3.7 72.1, 1.7 66.4, 2.6 74.3, 1.9
75.7, 2.9 84.0, 1.9 73.1, 1.7 72.4, 2.1 71.9, 2.4 80.5, 2.2 66.0, 1.8 70.7, 2.3 61.4, 2.7 73.3, 1.8
80.2, 3.0 86.1, 2.5 73.6, 4.3 80.3, 2.2 77.4, 1.5 83.3, 1.4 67.6, 2.7 74.9, 1.4 64.6, 3.2 74.6, 2.2
72.9, 2.6 82.1, 1.6 73.5, 2.4 73.4, 2.4 70.0, 2.5 79.4, 2.4 68.8, 2.4 73.5, 2.7 60.0, 1.9 72.8, 1.4
71.7, 3.3 81.1, 1.6 75.5, 2.8 77.2, 2.8 66.3, 4.7 78.0, 1.9 60.2, 1.3 62.4, 2.7 59.6, 3.2 68.7, 1.1

Table 5.2: Results for the AdaBoost learning algorithm. (TF: type of feature, NF: number
of features). For each experiment, the mean value and standarddeviation of the EEP point
of the ROC curve for 10 repetitions. For every object categoryand number of descriptor,
the best result is in bold face.

Local descriptors can be clustered in three groups using the average performance for both

SVM and AdaBoost: HMAX, SIFT-NRI, and SIFT. HMAX descriptors have the best perfor-

mance, followed by SIFT-NRI descriptors and SIFT descriptors. The separation between the

groups depends on the learning algorithm, in the case of SVM thedistance between groups

is larger than AdaBoost. AdaBoost groups are closer to each other and for some categories

(motorbikes, airplanes, and leopards) all descriptors have practically the same performance.

We can observe in the plots that HMAX descriptors are clearly ahead in recognition per-
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Figure 5.3: Comparison of performance depending on the type and number of features rep-
resenting the images. The classi�er used is Ada Boost.

formance with respect to the SIFT based descriptor. The very expensive matching procedure

of HMAX is one of the reasons for the superior performance over theSIFT descriptors. Con-

sidering an object component with sizeM � N and descriptor sizeS, the complexity of the

SIFT matching procedure isO(S), while in the case of HMAX (with the addition of bandsB

and orientationsT) the matching complexity isO(M � N � B � T � S). This very large di�er-

ence in the matching complexity is reected in the recognition rate di�erence. Additionally,

it may be the case that the adopted recognition architecture,inspired in the original HMAX

work, in fact gives an advantage to HMAX descriptors. Anyway, it isnot surprising that

a methodology using a dense Gabor �lter-based representation and a biologically motivated

recognition architecture based on a multi-scale multi-orientation matching procedure pro-

vides state-of-the-art results. In fact, this supports the ideaof utilizing biological inspiration

in addressing the challenging problem of object recognition.

Considering the comparison between Gabor-SIFT and SIFT, we note the better recogni-

tion rates of Gabor-SIFT. These results con�rm the performance improvement of the Gabor-

based SIFT descriptor presented in Chapter 4, now applied in a full recognition task.

5.3 Shape{and{appearance object recognition

Pictorial structures represent objects by a set ofC components (i.e. parts) and their relative

positions. This information is encoded into a graphG = ( V; E) whereV = f v1; : : : ; vc; : : : ; vCg

is the set of vertices modeling the appearance of the di�erentobject components andE =

f e1; : : : ; ek ; : : : ; eK g is a set of edges representing the object shape, i.e. the geometric rela-

tionships between some of the vertices. The connectivity of thegraph will depend on the
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particular problem { full connectivity is not always necessary.

For our tests we will consider rigid, or almost rigid, objects. Inthis case an e�cient

graph structure is given by a star model, where one of the nodes, denoted \landmark," is

connected to all other nodes, as illustrated in Figure 5.4. Forother types of objects, di�erent

graph connectivity structures may be more suited, for instancearticulated objects are more

appropriately represented by tree-like models [47]. In a stargraph structure, the set of edges

can be represented asE = f e12; : : : ; e1c; : : : ; e1Cg, wheree1c represents a connection between

node 1 (the landmark) and nodec.
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Figure 5.4: Pictorial structure model

For learning and recognition, a graph is modeled in a probabilistic framework [47] that

computes the probability of an image3 I , given an object con�gurationL = f l1; : : : ; l i ; : : : ; lng; l i =

(x i ; yi ) as

p(L jI; � ) / p(I jL; � )p(L j� ): (5.3)

Nodes are represented by the appearance of object parts. This isusually expressed by

the distribution of local descriptor values on the componentsimage patches, encoded as a

random vectoruc, c = 1; � � � ; C. Often, a Gaussian distribution is assumed and component

appearance is represented by its mean and covariance:

vc = ( � u c ; � u c ): (5.4)

For almost rigid objects, shape is represented by the distribution of relative displacements

between parts. This is usually modeled by Gaussian distributionsof the node x and y

3set of intensity values that visually represents the object
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coordinates referenced to the landmark location. Thus, the shape model can be written as:

e1c = ( � xc � x1 ; � 2
xc � x1

; � yc � y1 ; � 2
yc � y1

); c = 2; : : : ; C; e1c 2 E; (5.5)

Both the appearance and shape models can be learned from a set oftraining data. In Figure

5.2 we show a graphical representation of the model.

To detect objects in new images, we adopt the probabilistic framework of [47]. Objects are

detected by computing the posterior likelihood of object con�gurations L = f l1; : : : ; lc; : : : ; lng,

lc = ( xc; yc), given the model� = ( V; E) and the image dataI . We consider that the like-

lihood of an object part at a certain image locationlc, can be measured by an observation

process that \matches" the local descriptor at that image location with the part's appearance

model uc. With a Gaussian model for the appearance descriptors, the observation model is:

p(I jlc; uc) / N (� u c ; � u c ): (5.6)

Assuming statistical independence between the individual object part observation models,

which is a good approximation when the parts do not overlap, we can write the following:

p(I jL; � ) = p(I jL; V ) /
CY

c=1

p(I jlc; uc): (5.7)

The prior p(L j� ) is captured by the Markov random �eld with edge setE, expressed by

p(L j� ) =

Q
(v1 ;vc )2 E p(l1; lcj� )

Q
vc2 V p(lcj� )deg vc � 1

=

Q
(v1 ;vc )2 E p(x1; xcj� )p(y1; ycj� )

Q
vc2 V p(lcj� )deg vc � 1

; (5.8)

where degvc is the degree (depth) of vertexvc in the graph de�ned by E. If we do not have

preferences over the location of each part, the denominatorin Equation (5.8) is constant and

can be discarded (it is just a normalization factor). Thus replacing Equations (5.7) and (5.8)

in Equation (5.3), we obtain:

P(L jI; � ) /

0

@
CY

c=1

p(I jlc; uc)
Y

(v1 ;vc )2 E

p(x1; xcje1c)p(y1; ycje1c)

1

A : (5.9)

Computing the negative logarithm of Equation (5.9), the MAP solution can be obtained by
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the folowing minimization problem:

L � = arg min
L

0

@�
CX

c=1

logp(I jlc; uc) �
X

(v1 ;vc2 E )

logp(x1; xcje1c) �
X

(v1 ;vc2 E )

logp(y1; ycje1c)

1

A ;

(5.10)

With Gaussian assumption on both the appearance and shape models, the probability density

functions involved in the previous expression are:

p(x1; xcje1c) / N (� xc � x1 ; � 2
xc � x1

) (5.11)

p(y1; ycje1c) / N (� yc � y1 ; � 2
yc � y1

) (5.12)

p(I jlc; uc) / N (� u c ; � u c ): (5.13)

By solving the Equation (5.10), we will obtain the most probable object con�guration L �

in a new imageI .

5.3.1 Experiments with shape-and-appearance model

We aim to detect and locate faces in images using local-appearance models (adaptive Gabor

�lter-bank, SIFT, SIFT-Gabor, and HMAX) and the pictorial struc ture model. We use a

subset of the Caltech faces (100 images), background (100 images) database images, and

the software provided at the \ICCV'05 Short Course" [27]. In this experiment background

images do not model a negative class, but they are utilized onlyto test the object model in

images without faces. All images are subsampled to a 200x132 size.We select 10% of the

face images to learn the local descriptor model (� u i ; � u i ) and the pictorial structure model

(� x j � x1 ; � 2
x j � x1

; � yj � y1 ; � 2
yj � y1

), with C = 5 parts. The covariance matrices of the descriptors

are assumed diagonal. In the case of SIFT descriptors, it is necessary to reduce from 128

to 32 dimensions in order to compute covariance matrices elements. We recognize objects in

the remaining 90% of face image set and background images.

The model learning (i.e. estimation) is a supervised procedurein which the user clicks

in the image to select and locate face parts. We model �ve parts: left and right eye, nose

center, and left and right mouth corners. Model classi�cation (i.e. recognition) computes the

most probable location of the object in novel images (L � in Equation (5.10)).

During classi�cation we use the set-up presented in Figure 5.5. The modules are: (i)

Salient point detection, (ii) local descriptor computation, and (iii) face recognition. The

salient point detection module is equal to the one used in Chapter 2 (Section 2.7.2), composed

by: (i) initial interest point selection, provided by the local maxima of the Laplacian of

Gaussian response applied at several scales in the image, and (ii) selection of candidates for
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Figure 5.5: Set-up of the face recognition experiments

Figure 5.6: Face detection samples: 3 hits and 1 miss (right).

facial components using the saliency modelSMc, based on the wavelength signature.

The second module of the set-up is the local descriptor computation. We compute several

object component descriptors in order to compare the performances of: (i) the adaptive Gabor

�lter-based presented in Chapter 3, (ii) the original SIFT descriptor, (iii) the Gabor-based

SIFT descriptor presented in Chapter 4, (iv) HMAX, and (v) cross correlation. The last

module is the object model recognition, using the pictorial structure explained in Section

5.3.

Evaluation criteria comprises object detection and location. For object detection we

compute the Receiver Operator Characteristic (ROC) curve, varying the threshold in L �

value. For object location we compute precisionvs: recall curve, varying the ratio between

the intersection of ground truth and detected bounding boxesand the union of the bounding

boxes. The quantitative criterion for comparing two descriptors is the equal-error-point

(EEP) and area of the ROC curve (detection) and precisionvs: recall curve (location).
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In Table 5.3 we see the EEP results for face detection and localization. We also consider

a variant of the set-up in Figure 5.5, by removing the top-downsaliency model, to see the

inuence in the recognition rate.

ROC Recall-precision
EEP (%) Area(%) EEP (%) Area(%) Complexity

SIFT
82.1 91.3 79.9 82.2 saliency

O(S)
86.3 93.4 80.3 81.2 no saliency

SIFT-Gabor
83.1 91.7 80.5 84.1 saliency

O(S)
85.3 94.9 81.7 83.1 no saliency

HMAX
89 94.8 84.9 85.5 saliency

O(MNBTS )
90.8 95.6 86 85.8 no saliency

Adaptive Gabor 82.1 91.5 56.7 57.8 saliency O(S)
Cross correlation 80 70.5 38.1 33.7 saliency O(MN )

Table 5.3: Face recognition using pictorial structures [47].Equal-error-point (EEP) and
area of the ROC curve (detection) and precisionvs: recall curve (location), along with the
computational complexity of matching.

The very expensive matching procedure of HMAX is one of the reasons for the superior

performance over the SIFT descriptors. To illustrate the di�erence in the complexity between

descriptors, let us consider an object component with sizeM � N and descriptor sizeS. Then,

the complexity of SIFT matching procedure isO(S), while in the case of HMAX (with the

addition of bandsB and orientationsT) the matching complexity isO(M � N � B � T � S)

and for normalized cross-correlation it isO(M � N ).

Considering the matching complexity and performance, we see that SIFT has a very good

balance due to the e�cient matching procedure and good detection rates. By contrast, the

adaptive Gabor �lter descriptor of Chapter 3 has an e�cient matching procedure, having a

good face detection rate, but the localization rate is just above from chance. In the bottom

line we see the HMAX descriptor, having good performance in detection and localization,

but with a very high computational complexity to match descriptors. These results show the

suitability of dense Gabor �lter-based descriptors in challenging recognition problems.

Using object detection and localization criteria, we see that the top three descriptors are:

(i) HMAX, (ii) SIFT-Gabor, and (iii) SIFT. These descriptors are able to recognize faces

correctly in cluttered environments. Figure 5.6 shows examples of three correct detections

and one wrong detection when using HMAX.

The addition of the saliency module has two e�ects: (i) a drop inaverage of 3.1% in

the detection rate, and (ii) an increase of 1.13% in the localization rate. Nevertheless, the

experiments with saliency reduce in average, 65% of the computations during recognition.
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These results con�rm the advantages of the saliency model foundin Chapters 2 and 3.

5.4 Summary and conclusions

We present exhaustive experiments in component-based object recognition, using two kinds

of models: (i) an appearance-only-model, and (ii) a shape-and-appearance model. The

appearance-only model was utilized to detect object categories in a binary class problem,

in which the objective is to decide if there is an object of theclass modeled in new images.

We apply the shape-and-appearance model in a face detection and localization problem. The

purpose of the amount and variety of experiments done is to evaluate in object recognition

in cluttered scenes the capabilities of:

� the top-down saliency model provided by the wavelength signature. This model brings

e�ciency and improves the precision rate, reducing up to 65% the computations of the

subsequent steps of object recogntion.

� the Gabor-based SIFT descriptor, improving the recognition rates when compared to

the original SIFT.

� the SIFT descriptor, having a very good balance between computational complexity

during matching and good detection and localization rates of objects in cluttered data

sets.

� the HMAX descriptor, being able to discriminate categories and recognize faces cor-

rectly, showing that a very dense Gabor-based component description is feasible, but

at the expense of a matching procedure with very high computational complexity.



Chapter 6

Conclusions and future work

In this thesis we addressed the problem of component-based object recognition using biolog-

ically motivated Gabor �lters for interest point detection and representing image neighbor-

hoods (image descriptors). The visual cortex of the monkey brain contains layers of cortical

cells resembling Gabor functions that serve as a feature extraction front{end for subsequent

visual processing tasks. Similarly to Gabor functions, these cellsare able to analyze low-level

texture properties of the images and can be tuned for di�erent types of structures like edges,

bars and gratings, having di�erent scales, orientations and spatial frequencies.

Most of the existing works utilizing Gabor functions do not properly exploit the full

richness of their parameterization, limiting their application to the analysis of orientation

and scale \degrees of freedom." Instead we have explored the whole range of parameters

of the Gabor functions and show that a proper selection of theirvalues is advantageous in

four important steps of the object recognition problem: (i) the selection interest points, (ii)

the computation of the intrinsic scale of image regions, (iii) the design of robust local image

descriptors, and (iv) the representation of object categories.We have executed extensive

tests comparing the performance of our models with other state-of-the-art methods in all

stages of the object recognition architecture.

First, we proposed a coarse top-downinterest point selection method able to intro-

duce object related information very early in the recognition process and thus signi�cantly

reduce the overall computational cost. By contrast, most state-of-the-art object recognition

methods consider top-down information only in the �nal recognition decision. We introduced

an additional intermediate step in the recognition architecture in order to �lter bottom-up

candidates that are very di�erent from the model, thus excluding them from costly subsequent

recognition steps. The proposed method consists in modeling the local texture properties of

object parts by means of the analysis of isotropic patterns of di�erent wavelengths, invariant

to position, scale and orientation. This is achieved by computing a wavelength pro�le that
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collects the response of multiple Gabor �lters tuned to di�erent scales and orientations at

every wavelength. We derived a new �lter kernel able to compute the wavelength pro�le of

an image region without having to actually perform multipleGabor �lter convolutions. We

showed the ability of such a top-down saliency procedure to signi�cantly reduce the com-

putations required in object detection in cluttered scenes, with very few rejections of true

positives.

Secondly, we proposed a new method to compute theintrinsic scale of an interest point.

This is obtained by using the unique properties of the wavelength pro�le function used to build

the top-down saliency function. The method proposed is able tocompute the scaling factor

between an image region and scaled versions of it, even in cases where standard methods,

such as scale-normalized Laplacian of Gaussian, fail: (i) it is able to correctly compute the

intrinsic scale in ridge-like structures, and (ii) it presents very low variance in its output for

regions with very similar visual appearance. These advantagesallow computing the intrinsic

scale in a broader set of textured regions than standard methods.

Regarding the description of image neighborhoods we have considered �lter-based and

histogram-based methods. One of the best known state-of-the-artmethods in �lter-based

methods is the HMAX, which serves as a baseline for comparison. To overcome the extreme

computational load of HMAX or similar methods, we presented an alternative method that

relies on a local descriptor vector composed of a limited number of Gabor responses computed

with the selection of best frequencies (wavelength inverse) and scales. Instead of using a

Gabor �lter bank with a �xed set of parameters, this approach performs a data driven

automatic selection of the most informative Gabor parameters.This is achieved by looking for

local extrema of the Extended Information Diagram (EID) function of each object component.

An additional step allows the representation of components in away invariant to scale and

orientation. We presented experimental results where we havesuccessfully recognized object

components using either: (i) the adaptive Gabor local descriptor model only or (ii) both

the adaptive Gabor local descriptor model and the top-down saliency model to successfully

detect and locate facial components.

We also exploited the paradigm of Gabor parameter selection for improving well-known

state-of-the-art histogram-based descriptors. We presented a method to select the best scale

to compute �rst order image derivatives in order to improve SIFT local descriptor distinctive-

ness. The parameter selection procedure looks for local extrema of odd Gabor �lter responses,

providing the best �lter width to compute the image derivatives in scale-normalized regions.

In order to evaluate the improvement over the original SIFT descriptor, we use the compari-

son framework introduced by Mikolajczyk and Schmid [83]. Theresults obtained have shown

that the matching capabilities of SIFT are improved on average.
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Finally, we evaluated the proposed approaches forautomatic selection of Gabor �lter

parameters by applying them in a full object recognition setup. We evaluated their perfor-

mance in comparison to other state-of-the-art approaches in two important classes of object

recognition problems: appearance-only and shape-and-appearance.

In a �rst group of tests we applied an appearance-only object model that disregards pose

between local descriptors. The model is applied to the recognition of several object categories

in order to compare the performance of various local descriptors. Results from this group

of tests have shown that our proposed improvement of the SIFT descriptor surpasses the

original SIFT, using the recognition rate as performance criterion. In a second group of

tests, we applied a shape-and-appearance object model to evaluate the performance of: (i)

the top-down saliency model from the wavelength signature, (ii) the adaptive Gabor �lter

bank, and (iii) the Gabor-based SIFT descriptor. The results ofboth groups of experiments

in cluttered images, presented in Chapter 5, reinforced the conclusions obtained previously

in Chapters 2-4:

� The top-down saliency model with wavelength signature is ableto signi�cantly reduce

the computational complexity of the object component matching, giving rise to very

few rejections of the actual object components.

� The adaptive Gabor �lter bank is able to match object components with a performance

comparable to the HMAX and with signi�cantly smaller computational cost. The rate

of false positives may become important for complex, highly cluttered images.

� The Gabor-based SIFT descriptor outperforms the original SIFT local descriptor in

terms of recognition rate, at the cost of a small addition to thecomputational e�ort.

Another important conclusion of the experimental work is related to the performance of

the HMAX method in category recognition. Although this method was not proposed by us,

it is a nice example of the utilization of biologically motivated principles. The inspiration by

the primate brain is twofold: the use of Gabor functions as low-level feature and a matching

procedure inspired in the structure of the visual cortex.

In summary, we have shown the applicability of Gabor �lters in several steps of the object

recognition process, from salient point detection to object component description. Results

are comparable to current state-of-the-art, but three important points should be noticed and

distinguished from other works:

� The early introduction of coarse appearance models in the recognition process allows

important computational savings.
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� Purposeful selection of the Gabor function parameters has proven to be a successful

technique, overcoming �xed Gabor �lter approaches.

� The promising results obtained with the application of biological principles in object

recognition, in particular the performance of the HMAX method, encourage further in-

vestigations in Gabor-based approaches, which may lead to novel methods that surpass

the current state-of-the-art.

6.1 Future work

One of the main results of this thesis is the derivation of a saliency function based on the

scale and rotation invariance texture properties of the Gabor function. The successful results

provided by the top-down saliency operator encourage the application of the wavelength sig-

nature operator in other image domains. The wavelength signature extracts the contribution

of several textures, a property that is suitable to detect abnormal textures and perform dense

frequency estimation in images.

The successful recognition rates provided by the HMAX-based model show that features

based on Gabor responses are suitable to detect objects in imagesif appropriate sampling

of the responses and matching procedures are designed. The matching procedure of the

adaptive Gabor �lter descriptors provides, however, a high number of false positives, mainly

due to the local match in the scale dimension and the sparseness of the representation.

Future approaches should consider both the adaptive nature ofthe Gabor �lters presented

in this thesis, along with a more dense representation, and an exhaustive matching criterion

to obtain high numbers in the true positive rate and very low numbers in the false negative

rate.

One of the main contributions of this thesis is the introduction of a top-down module

in the early stages of object recognition, demonstrating the e�ciency improvements in vi-

sual search tasks. The next step to boost the recognition process is the consideration of

hierarchical features in the initial steps of the object recognition architecture. Common ap-

proaches to component-based recognition consider every partindependently during interest

point selection and description. By contrast, it seems that humans learn visual features in a

hierarchical manner, by encoding a sort of superfeatures thatcan be explained in terms of

smaller subfeatures [2].

Experiments with human subjects have shown that adults and infants are able to extract

conditional probability statistics between particular elements in speci�c spatial con�gura-

tions [15]. The experimental evidence also suggests that the human visual system eliminates

(reduces the weight of) features embedded in larger features, but only if they never appear
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outside of the larger features [34]. This can be seen as a dimensionality reduction procedure.

Furthermore, an open question in human vision research is the construction process of these

superfeatures. The experiments presented in [34] suggest that the boundaries between super-

features contain low-level features with low predictive power (i.e. we can not rely on them

to predict the appearance of other features).

Recent works in computer vision [32, 31] have addressed the construction of hierarchies

of low-level features, but the construction process relies on the \parts composed by parts"

approach, instead of the biologically motivated construction based on the feature predic-

tive power. Thus, the addition of a hierarchical feature construction module to the object

recognition architecture will bring more exibility and e� ciency to the state-of-the-art object

models.
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Appendix A

Gabor wavelength saliency function

A.1 Gabor wavelength saliency kernel

The closed form expression of Equation (2.10) is:
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x2 + y2, erf(z) is the error function, J0(z) is the Bessel function of �rst kind.
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Appendix B

Image matching results

This appendix contains the matching results of the image neighborhood matching experiment

[83] to evaluate comprehensively the improvement in the SIFTdescriptor [70] explained in

Chapter 4.
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Figure B.1: recall vs. 1� precision curves of Hessian-a�ne regions matched using textured
images in Figure B.1(d), related by a viewpoint transformation.
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Figure B.2: recall vs. 1� precision curves of Harris-a�ne regions matched using structured
images in Figure B.2(d), related by a viewpoint transformation.
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Figure B.3: recall vs. 1� precision curves of Harris-a�ne regions matched using structured
images in Figure B.3(d), related by a viewpoint transformation.
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Figure B.4: recall vs. 1� precision curves of Harris-laplace regions matched using textured
images in Figure B.4(d), related by a scale + rotation transformation.
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Figure B.5: recall vs. 1� precision curves of Hessian-laplace regions matched using textured
images in Figure B.5(d), related by a scale + rotation transformation.
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Figure B.6: recall vs. 1� precision curves of Harris-laplace regions matched using structured
images in Figure B.6(d), related by a scale + rotation transformation.
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Figure B.7: recall vs. 1� precision curves of Hessian-a�ne regions matched using structured
images in Figure B.7(d), related by a blur transformation.
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Figure B.8: recall vs. 1� precision curves of Hessian-a�ne regions matched using textured
images in Figure B.8(d), related by a blur transformation.
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Figure B.9: recall vs. 1� precision curves of Hessian-a�ne regions matched using structured
images in Figure B.9(d), related by a JPEG transformation.
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Figure B.10: recall vs. 1� precision curves of Hessian-a�ne regions matched using structured
images in Figure B.10(d), related by an illumination transformation.
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Appendix C

Object category results

This appendix contains the object recognition results of thefollowing categories: camel, car

(side view), car (rear view), face, guitar, leaves and motorbikes. These experiments evaluate

several local descriptors using an appearance-only object model (Chapter 5).
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Figure C.1: Recognition performance of the camel category,for several local descriptors.
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Figure C.2: Recognition performance of the car category (side view), for several local de-
scriptors.
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Figure C.3: Recognition performance of the car category (rear view), for several local de-
scriptors.
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Figure C.4: Recognition performance of the face category, for several local descriptors.
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Figure C.5: Recognition performance of the guitar category, for several local descriptors.
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Figure C.6: Recognition performance of the leaves category, for several local descriptors.
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Figure C.7: Recognition performance of the motorbike category, for several local
descriptors.
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