
An Online Algorithm for Simultaneously Learning Forward and Inverse

Kinematics

Bruno Damas and José Santos-Victor

Abstract— This paper proposes a supervised algorithm for
online learning of input-output relations that is particularly
suitable to simultaneously learn the forward and inverse kine-
matics of general manipulators — the multi-valued nature of
the inverse kinematics of serial chains and forward kinematics
of parallel manipulators makes it infeasible to apply state-of-
the-art learning techniques to these problems, as they typically
assume a single-valued function to be learned.

The proposed algorithm is based on a generalized expectation
maximization approach to fit an infinite mixture of linear
experts to an online stream of data samples, together with an
outlier probabilistic model that dynamically grows the number
of linear experts allocated to the mixture, this way controlling
the complexity of the resulting model. The result is an incre-
mental, online and localized learning algorithm that performs
nonlinear, multivariate regression on multivariate outputs by
approximating the target function by a linear relation within
each expert input domain, which can directly provide forward
and inverse multi-valued estimates. The experiments presented
in this paper show that it can achieve, for single-valued
functions, a performance directly comparable to state-of-the-art
online function approximation algorithms, while additionally
providing inverse predictions and the capability to learn multi-
valued functions in a natural manner. To our knowledge this is
a distinctive property of the algorithm presented in this paper.

I. MOTIVATION AND RELATED WORK

This work presents a new online learning algorithm that

can successfully be applied to forward and inverse kinematics

estimation for both serial and parallel manipulators. The

forward kinematics learning problem can be stated as the

estimation of a relation X = f(q) relating the task space

coordinates X of the end effector of the robot with respect to

a given reference frame (e.g. the 3D position and orientation

of the end effector frame) to the joint space where q, the

controlled joint variables, are defined. Inverse kinematics,

on the other side, describes the inverse problem of obtaining

the joint variables corresponding to a given task space vector,

i.e., finding q = g(X).
The main problem that arises when learning such kine-

matics is that even for non redundant manipulators, where

the task and joint space dimensions are equal, f or g may

not be proper functions, exhibiting multiple solutions for the

same input argument — these are known as multi-valued

functions or multimaps, one-to-many maps where a single

input can be associated with one or more different outputs.

Inverse kinematics of serial robots, for instance, exhibit this

Bruno Damas and José Santos-Victor are with the Instituto de Sis-
temas e Robótica, Instituto Superior Técnico, Lisboa, Portugal. Bruno
Damas is also with Escola Superior de Tecnologia de Setúbal, Portu-
gal. {bdamas,jasv}@isr.ist.utl.pt. This work was partially
funded by FCT (PEst-OE/EEI/LA0009/2011) and EU Projects POETI-
CON++ (FP7-ICT-288382) and HANDLE (FP7-ICT-231640).

multiple solution behaviour; on the other hand, the inverse

situation often arises with parallel robots, where a single

value for the actuation variables may correspond to distinct

values of the task space vector [1], [2].

Although much work has been done to derive analytical

solutions for a broad class of manipulators, there are situa-

tions where an analytical model fails to provide an accurate

approximation to the real robot. These situations range from

lack of knowledge of certain hard to measure physical

parameters (e.g. friction) to highly non-linear physical inter-

actions, such as actuator nonlinearities and unmodeled mass

distributions [3], [4]. In such complex situations we must

resort to modern supervised learning techniques to provide

these systems with the necessary representation capability. In

the context of robotic applications the need for online and

incremental learning algorithms is often also a requirement,

particularly when the prediction and learning are not two

distinct phases: this makes some state-of-the-art non-linear

function approximation methods, like Support Vector Regres-

sion and Gaussian Process Regression (GPR), non suitable

for these kind of applications, as they require, in their original

form, either the presence of all data points in memory

or computational demands that are not suitable for online

learning. Recently some modifications where suggested to

address this problem, such as sparse and local versions of GP

[4]: however, all of these methods can only provide single-

valued predictions and are not able to provide solutions for

the inverse problem.

Locally Weighted Projection Regression (LWPR) is an-

other type of non-linear function approximation, very popular

and widely used for online, real-time learning of robotic

tasks: it performs spatially localized learning based on

linear local models, making use of an incremental partial

least squares algorithm to deal with redundant and high-

dimensional input spaces [5]. Its excellent memory require-

ments and computational complexity have made LWPR a

reference online learning algorithm. Yet it cannot deal with

multi-valued functions, since LWPR adjustment of the size of

its receptive fields is based on a stochastic gradient minimiza-

tion of the output cross-validation error. Also, LWPR cannot

provide inverse predictions in its original form: in [6] inverse

kinematics for serial robots are learned using LWPR, but this

approach, like other inverse kinematics learning methods,

only obtains a single inverse solution by application of some

sort of constraining or optimization criterion.

Unsupervised learning algorithms, such as mixture of

Gaussians (MoG), can be applied to supervised learning

tasks, using the conditional densities obtained from the

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1736-8/12/S31.00 ©2012 IEEE 1499

learned joint density function over both inputs and out-

puts [7], [8]: this, in principle, makes it easier to learn

multi-valued functions, as no particular modification of the

unsupervised algorithm is needed to deal with such structure

in the input-output relation. However, unsupervised learning

is a more difficult problem than its supervised counterpart

and usually results in a worse performance, as it ignores

that joint data, apart from noise corruption, lies in a lower

dimensional manifold: not acknowledging this fact typically

results in the convergence to sub-optimal solutions that do

not take the problem structure into account.

Somewhat related to LWPR, another popular approach to

nonlinear function learning is based on the Mixtures of Ex-

perts (ME) concept [9], where competing experts, assigned

to different zones of the input space, are responsible for

generating a corresponding output, being the final prediction

produced by a gating network that combines their outputs.

In its simplest form a ME is an offline algorithm, for which

the number of components — number of experts — must be

set beforehand. [10] suggests an online version for the ME,

based on the introduction of a discount factor in the update

of the sufficient statistics vector of the mixture. However,

it considers only single-value forward estimation, and the

regularization and allocation of experts is performed in a

somewhat heuristic way.

Still, the mixture of experts concept introduces a frame-

work suitable for the multi-valued function learning and

prediction, as different experts can be allocated to different

solutions in the output space corresponding to the same input.

In [11] this approach was followed, by considering each

expert to be a sparse GP. Like the algorithm presented in this

paper, it is one of the few supervised learning algorithms that

is explicitly able to learn multi-valued functions. However,

the inference procedure, based on Monte-Carlo integration

over the posterior distribution, imposes some computational

limitations on the algorithm, and no method to perform

inverse prediction is given. Another approach [12] considers

a mixture of neural networks to account for the multi-

valued nature of the function to estimate: differently from

our work, they use an iterative mode finding algorithm; also,

their learning method cannot provide forward and inverse

predictions from the same learned model.

The Infinite Mixture of Linear Experts (IMLE) proposed

in this paper is an online, real-time supervised learning

algorithm that is able to learn multi-valued functions while

allocating experts to the mixture as needed, achieving perfor-

mance comparable to some state-of-the-art methods. It is, at

its core, an infinite mixture version of the model for mixture

of linear experts given by [13], [10], with a careful choice

of priors for some of its parameters and the adoption of

a Generalized Expectation-Maximization (GEM) approach

that allows, in the first place, an online operation based

on the concepts present in [14], [15], and secondly, the

automatic allocation of experts to the mixture in order to

adapt to the complexity of the function to be learned. This

probabilistic model is detailed in Section II, while the GEM

algorithm to train it is presented in Section III. Section IV

describes how to obtain forward and inverse multi-valued

predictions for any query, given the current state of the

IMLE model. IMLE is experimentally compared to LWPR

in Section V, and some other experiments are conducted to

provide evidence of the good performance of the proposed

algorithm, focusing especially on the multi-valued function

approximation. Finally, Section VI provides the concluding

remarks.

II. PROBABILISTIC MODEL

The Infinite Mixture of Linear Experts assumes the fol-

lowing generative model for a sample point (xi, zi), where

zi ∈ R
d is the predictor, xi ∈ R

D the corresponding

quantitative response and Θ the mixture parameters to learn:

p(xi|zi, wij ; Θ) ∼ N
(

µj +Λj(zi − νj),Ψj

)

, (1)

p(zi|wij ; Θ) ∼ N (νj ,Σj) , (2)

p(wij ; Θ) = mj . (3)

Here wij denotes a latent or hidden indicator variable that

equals 1 if data point i was generated by linear model j
and 0 otherwise, with

∑

j wij = 1 (sometimes we will use

the shorthand notation wij to denote the event wij = 1,

as in above equations): an improper constant prior mj is

assigned to this latent variable, equal to 1 if linear model j
is consider to be present in the mixture and 0 otherwise.

This allows us to select which experts contribute to the

overall mixture, this way controlling the mixture effective

size, as it will be explained subsequently in the text. Given

wij , input zi follows a Normal distribution with location

and shape parameters νj and Σj , while output xi follows a

linear relation from zi, with location parameter µj , design

matrix Λj and diagonal covariance matrix Ψj , corresponding

to uncorrelated noise in the response x. This model, apart

the improper prior for wij , is similar to the one presented

in [13], where each expert j models a linear relation from

input z to output x in some region of the input domain,

defined by input center νj and covariance Σj , this way

softly partitioning the input space among the experts. Θ is

the (infinite) parameter vector that defines this mixture, given

by Θ = σ∪
{

νj ,Σj ,µj ,Λj ,Ψj ,mj

}

(1≤j≤∞)
, to be learned

from the data.

Additionally, the following priors on the parameters of the

mixture are defined:

p(νj ,Σj |σ) ∼ NW−1(ν0j , nν , nΣσI, nΣ) , (4)

p(σ) ∼ G−1(nσ, nσσ0) , (5)

p(Λk
j ,Ψ

k
j) ∼ NG−1

(

Λ0 = 0, n−1
Λ I,

nΨ

2
,
nΨ

2
Ψ

k
0

)

. (6)

Here, NW−1 and NG−1 denote respectively multivari-

ate Normal-Inverse Wishart and univariate Normal-Inverse

Gamma distributions. Ψk
j and Ψ

k
0 are the kths elements of

the respective diagonal matrices, while Λ
k corresponds to

the kth row of the design matrix. nν , nΣ, nΨ and nΛ are

constants determining the “strength” of the respective priors,

ν0j , Σ0 = σI , Ψ0 and Λ0, expressed as an equivalent

1500

number of “fake” data points. Parameter σ0 is an initial guess

for σ and nσ defines the strength of such belief.

The purpose of the common spherical prior for Σj is

threefold: it introduces some regularization, so that Σj has

always an inverse; second, it ensures that the experts input

areas shapes do not differ too much from each other, and

finally, it prevents non-neighboring experts from competing

for the same data in the initial phase of the learning process

of each expert — a serious problem occurring in mixtures

of experts models, referred for instance in [5], thus enforc-

ing the principle of localized learning. The inverse-gamma

hyper-prior on σ allow us to define an initial guess for σ,

as well a corresponding degree of belief in this guess. The

normal prior on νj controls the degree of “mobility” of

this parameter: nν = 0 makes it dependent solely on the

perceived data, while nν = ∞ leads to a fixed input center

for each expert, as occurs typically in Radial Basis Networks

or in LWPR. The prior on Ψj defines the initial guess for the

output noise and is closely related to the admissible error of

IMLE prediction, ultimately controlling the degree of overfit-

ting/oversmoothing of the algorithm. Finally, a prior Λ0 = 0
for the design matrix Λ performs a coefficient shrinkage

similar to ridge regression. It’s main purpose, however, is

to impose a regularization mechanism, in order to make the

matrix inversion required when estimating this parameter

always full rank. Such prior introduces some bias in the

expert prediction, and consequently nΛ should be kept to a

low value in order to make such undesired effect negligible.

Lastly, a special class w0 is defined, corresponding to outliers

that are not generated by any of the linear experts, with

an improper prior p(w0) = 1 and an improper constant

distribution

p(xi, zi|w0) =
1

(2π|Ψ0|)
D
2

1

(2π|σI|)
d
2

e−0.5Kd+D .

Here Kd+D is obtained from the inverse of the chi-squared

cumulative distribution function, with d+D degrees of free-

dom, for a given probability 1−p0. This makes p(xi, zi|w0)
directly comparable to the probability density p(xi, zi|wij)
for a newly activated, not yet trained expert j, evaluated

at a point (xi, zi) that lies over the equidensity contour that

encircles the region, centered at (µj ,νj), corresponding to a

1−p0 probability. Parameter p0 thus controls the probability

of a point being generated by the outlier model: the lower

the value of p0 the lower p(xi, zi|w0) is, making a point

less probable to be an outlier. As described in Section III,

this class has an important role on the process of assigning

new experts to the mixture, which heavily depends on the

posterior probability of a point being generated by the outlier

model: equation (II) has the important property of making

such process approximately invariant with respect to input

and output dimension, input scale and output noise.

III. LEARNING

Training the IMLE model can be accomplished by the

Expectation-Maximization (EM) algorithm [16]: assuming

Z, X and W to contain respectively the input sample

{z1, z2, · · · , zN} and the corresponding output and hidden

indicator samples, the log-likelihood of the complete data is

given by

l(Θ;X,Z,W) = log p(Θ|X,Z,W)

∝ log

[

p(Θ)

N
∏

i=1

p(xi|zi,wi; Θ)p(zi|wi; Θ)p(wi; Θ)

]

,

(7)

where wi is defined as a vector whose entries are equal

to wij and probabilities appearing therein are given by

p(xi|zi,wi; Θ) =
∏∞

j=1 p(xi|zi, wij ; Θ)wij , p(zi|wi; Θ) =
∏∞

j=1 p(zi|wij ; Θ)wij and p(wi; Θ) =
∏∞

j=1 p(wij ; Θ)wij .

The (batch) EM algorithm then produces a sequence of

estimates Θ̂t by alternating between the expectation step (E-

Step), which calculates the so called Q-function Q(Θ, Θ̂t),
the conditional expectation of l(Θ;X,Z,W) with respect

to the latent variables wij , for the current value of Θ̂t, and

the maximization step (M-Step), that finds the new value of

Θ̂t+1 given the previous expectation.

A. E-Step

The log-likelihood is linear with respect to the latent

variables wij , and hence it suffices, to obtain Q(Θ, Θ̂t), to

calculate ht
ij = E[wij |X,Z; Θ̂t], the estimate of the pos-

terior probability that data point i was effectively generated

by expert j, also called the responsibility that expert j has

generated data point i. Since only xi and zi depend on wij ,

we have, using Bayes’ theorem,

ht
ij ≡ E[wij |X,Z; Θ̂t] = p(wij |xi, zi; Θ̂

t)

=
p(xi|zi, wij ; Θ̂

t)p(zi|wij ; Θ̂
t)m̂t

j
∑∞

k=1 p(xi|zi, wik; Θ̂t)p(zi|wik; Θ̂t)m̂t
k

;
(8)

with this result, the Q-function to be maximized in the

following M-Step becomes

Q(Θ, Θ̂t) ≡ EW [l(Θ;X,Z,W); Θ̂t] = log p(Θ) +
N
∑

i=1

∞
∑

j=1

ht
ij log [p(xi|zi, wij ; Θ)p(zi|wij ; Θ)p(wij ; Θ)] .

(9)

B. M-Step

The Q-function in (9) belongs to the exponential family,

and consequently can be expressed as a function of the

expected value of the sufficient statistics St, comprising the

following terms:

St
hj =

∑N

i=1 h
t
ij , St

hzzj =
∑N

i=1 h
t
ijziz

T
i ,

St
hzj =

∑N

i=1 h
t
ijzi , St

hxzj =
∑N

i=1 h
t
ijxiz

T
i and

St
hxj =

∑N

i=1 h
t
ijxi , St

hxxj =
∑N

i=1 h
t
ijxix

T
i . (10)

M-Step assigns Θ̂t+1 to the value of Θ that maximizes

Q(Θ, Θ̂t). We use the fact that most of the priors are

conjugate to the data likelihood to derive the new estimates

Θ̂t+1: without entering into details, it can be shown that,

1501

given St, the posterior for (νj ,Σj) still follows a Normal-

Inverse Wishart distribution; each element of the diagonal

of Ψj has a posterior inverse Gamma distribution, and the

posteriors for µj and for each row of Λj now follow a t-

Student distribution, that under the reasonable assumption of

a large value of nΨ can be approximated by a multivariate

Normal distribution. Picking the modes of these distributions,

for the set of active experts, maximizes Q(Θ, Θ̂t):

ν̂
t+1
j =

St
hzj + nνν0j

St
hj + nν

, (11)

Σ̂
t+1

j =
St

hzzj − (St
hj + nν)ν̂j ν̂

T
j + nσσ̂I + nνν0jν

T
0j

St
hj + nΣ + d+ 2

,

(12)

Λ̂
t+1

j = (St
hxzjS

t
hj − St

hxjS
t
hzj

T)·

· (nΛS
t
hjI + St

hzzjS
t
hj − St

hzjS
t
hzj

T)−1 , (13)

µ̂
t+1
j =

St
hxj

St
hj

+ Λ̂j(ν̂j −
St

hzj

St
hj

) and (14)

Ψ̂
t+1

j =
nΨΨ0 + diag

{

Shxxj − Λ̂jS
T
hxzj − µ̂jS

T
hxj

}

nΨ + Shj + 2
,

(15)

where diag{·} denotes a diagonal matrix equal to the diag-

onal of its argument. For notational convenience we omitted

the iteration step t + 1 for the parameter estimates ν̂j , Λ̂j ,

µ̂j and σ̂ appearing in the right hand of the above formulas.

Unfortunately, no analytical expression exists for the pos-

terior distribution of the common scale prior σ, and so we

must obtain the partial derivatives of the Q-function with

respect to σ and equate them to zero, getting

σ̂t+1 =
A+

√

A2 + 2nσ

nΣ
σ0B

B
, (16)

where

A =
M t+1d

2
−

nσ + 1

nΣ
and B =

∑

j

tr{(Σ̂
t+1

j)−1} ;

M t is the effective number of experts contributing to the

mixture at iteration t, i.e., M =
∑∞

j=1 m̂j , and the sum in

the above equation is over the current set of active experts.

Solving for m̂t+1
j that maximizes the likelihood is however

intractable, as it requires evaluating all the infinite combina-

tions of values for mj and picking the one that maximizes

the Q-function.

C. Online Learning

The EM training for the infinite mixture of linear models

presented in the previous section is a batch algorithm, unsuit-

able for real-time robotic applications. It can however easily

be turned into an online, incremental learning algorithm if

only a partial E-Step is implemented, updating, at iteration

t+ 1, the sufficient statistics using solely the most recently

acquired data point i. We will closely follow the results

recently proposed in [15], where it is suggested that the sums

in (10) be incrementally updating using the rule

St+1 = St + γt+1(s
t+1 − St) , (17)

where st+1 is the value of the sufficient statistics for the most

recent point (xi, zi) and with γt being a step-size. Setting

γt = t−α, for α ∈ (0.5, 1], guarantees the algorithm con-

vergence under some mild assumptions, while introducing a

time decay in the sufficient statistics that may be beneficial

when slowly time varying data is presented to the algorithm.

Choosing α = 1 results in an accumulation of the sufficient

statistics with no forgetting over time and is equivalent to

the generalized EM algorithm described in [14].

D. Allocation of New Experts

Choosing the appropriate number of components for the

mixture is a difficult problem and several methods have

been proposed to deal with it: a Bayesian approach, for

instance, typically assigns a Dirichlet process prior on the

mixing proportions of the infinite mixture, responsible for

the automatic generation of the correct number of compo-

nents [17]. Training usually resorts to offline, computational

expensive Markov Chain Monte Carlo sampling methods or

to variational Bayesian inference algorithms.

In this paper we take advantage of the fact that changing,

at iteration t, the value of a particular parameter m̂j from 0

to 1 will always increase the Q-function. Choosing the values

m̂j that maximize the Q-function is intractable, but relaxing

this maximization requirement results in a generalized EM

method, where the M-Step is modified to an update that

improves the Q-function, without necessarily maximizing

it [16]. This allows us to derive a broad class of criteria to

decide when to activate a particular expert j, ranging from

only allowing the existence of a single expert, equivalent

to performing a global linear regression on the data, to

the activation of a new expert for each new data point

processed, which would correspond to some kind of Lazy

Learning approach, where predictions are made resorting to

all available data (X,Z). In online, incremental algorithms,

however, a more sensible approach is to allocate new experts

only when an acquired data point is poorly explained by the

current probabilistic model. LWPR, for instance, achieves

this by creating a new linear model each time a new input

data point zi fails to activate the nearest receptive field by

more than a given threshold. Of course, when dealing with

multi-valued functions such activation scheme must take into

account both the input and output part of the data point.

IMLE criterion for activating new experts starts by con-

sidering a training point (zi,xi) to be an outlier if the

posterior probability for class w0 is dominant over the

experts posterior probabilities, i.e., if p(w0|xi, zi,S
t) > 0.5.

This quantity is given by

p(w0|xi, zi,S
t) =

p(xi, zi|w0)
∑

j p(xi, zi|wj ,S
t) + p(xi, zi|w0)

,

with p(xi, zi|wj ,S
t) = p(xi|zi, wij ,S

t)p(zi|wj ,S
t), and

so this condition is equivalent to
∑

j p(xi, zi|wj ,S
t) <

1502

p(xi, zi|w0). We consider the probability of observing two

consecutive outliers to be very low: when this happens we

assume it to be caused by a lack of fit of the mixture to the

current training points, and a new expert j is then activated,

by making m̂j = 1.

E. Computational Complexity

For a novel observation (zt,xt), a complete update of the

mixture parameters consists of: (1) deciding whether a new

expert should be activated; (2) assigning responsibilities hij

to active experts according to (8); (3) updating the sufficient

statistics for each expert; and (4) obtaining the new values for

mixture parameters presented in Θ̂. If the Sherman-Morrison

formula is used to update the matrix inversions involved in

the final steps, the learning algorithm is O(Md(d + D)),
i.e., linear in the number of active experts M and output

dimensions and quadratic in the number of input dimensions,

thus making it directly comparable to the state-of-the-art

LWPR in terms of computational complexity per training

point. Like LWPR, this complexity can be made linear in d if

the input distance metrics Σj are constrained to be diagonal.

IV. PREDICTION

A. Forward Prediction

The conditional density of x for a given query point zq ,

at any iteration t of the learning process, is

p(x|zq) =
∑

j

wx
j (zq)p(x|zq, wqj) , with (18)

wx
j (zq) ≡ p(wqj |zq) =

p(zq|wqj)
∑

k p(zq|wqk)
(19)

and where the sums are performed over the active experts.

This conditional density can be understood as a weighted

mixture of M Normal densities, each corresponding to a

point estimate provided by a different expert, together with

an uncertainty value, and where the mixture weights are

given by the posterior probabilities that the query point was

generated by each expert. Without entering into details, it

can be shown that p(x|zq, wqj) is approximately Normal,

with mean and variance given by x̂j ≡ Λ̂j(zq − ν̂j) + µ̂j

and Rx
j ≡ [1 + γj(zq)]Ψ̂j , where γj(zq) is a factor that

accounts for expert j prediction uncertainty at location zq.

Single-valued prediction, together with an associated un-

certainty, can be obtained from this density by simply taking

its mean and variance — this is, for instance, the approach

followed by LWPR — but for multi-valued prediction an-

other mechanism has to be devised.

Assuming for the moment the existence of Nsol different

solutions for query zq and dropping the dependence on this

query for notational convenience, we propose, as a Bayesian

model relating experts predictions to multi-valued solutions,

that each expert prediction x̂j is generated from solution k,

1 ≤ k ≤ Nsol, according to

x̂j |sjk ∼ N (x̄k,Rj ≡ Rx
j /w

x
j) , (20)

where sjk is a latent indicator variable that signals if expert

x̂j was produced by solution k and x̄k is the unknown kth

solution to be found. The rationale for the definition of Rj

follows from the traditional probabilistic view of weighted

least squares and best linear unbiased estimators [18], [5],

where we incorporate each expert weight wx
j in the respective

predictor variance. Finding x̄k is the classical problem

of clustering M observations x̂j into Nsol classes, where

each observation has a different variance. A (possible non-

optimal) solution for this problem is given by the EM

algorithm, for which the following iterations can easily be

found:

ht
jk = E[sjk|x̂j , ˆ̄x

t
k] =

p(x̂j |sjk, ˆ̄x
t
k)

∑

l p(x̂j |sjl, ˆ̄xt
l)

(E-Step), (21)

ˆ̄xt+1
k = (

∑

j

ht
jkR

−1
j)−1(

∑

j

ht
jkR

−1
j x̂j) (M-Step). (22)

We found that it takes only a few iterations for the algo-

rithm to converge. After that, predictions are hard-assigned

to solutions according to the final value of hjk, resulting in

the following estimate for solution k, where the sums are

over experts assigned to this solution:

ˆ̄xk = R̂j

∑

j

R−1
j x̂j , with R̂j ≡ (

∑

j

R−1
j)−1 .

A good indicator for the validity of the set of solutions

found by the previous step is the dispersion of experts esti-

mates around the corresponding solution ˆ̄xk: large deviations

from this value indicate the need to increase the value of

Nsol. Under the hypothesis that each x̂j assigned to solution

k was effectively generated according to (20), the statistic Tk

follows a chi-squared distribution for every solution k,

Tk =
∑

j

(x̂j − ˆ̄xk)
TR−1

j (x̂j − ˆ̄xk) ∼ χ2
(Mk−1)D , (23)

where the sums are over experts assigned to solution k and

Mk is the number of experts belonging to that solution. If the

p-value for any solution k is lower than a given significance

level αmulti, the current set of solutions ˆ̄xk is considered to

be badly explained by the data.

Forward prediction starts with the single-valued predic-

tion: Nsol is then successively increased, repeating steps (21-

22), until the above hypothesis fails to be rejected for any

of the obtained solutions.

B. Inverse Prediction

Defining y = [zT , xT]T to be the joint input-output

vector, an inverse prediction can be obtained, for each expert,

from its distribution p(y), given by

p(y|wqj) = p(x|z, wqj)p(z|wqj) = N (ȳj ,R
y
j) ,

where ȳj = [νT
j , µ

T
j]

T and

R
y
j =

[

Σj ΣjΛ
T
j

ΛjΣj Ψj +ΛjΣjΛ
T
j

]

.

From the above expression it results that p(z|xq, wqj)
follows a Normal distribution with mean and variance given

1503

by

ẑj(xq) = ν̂j +Rz
j Λ̂

T

j Ψ̂
−1

j (xq − µ̂j) and (24)

Rz
j = (Σ̂

−1

j + Λ̂
T

j Ψ̂
−1

j Λ̂j)
−1 ; (25)

this allow us to define a Bayesian model similar to the one

presented for forward prediction, where now we have ẑj ,

given by (24), instead of x̂j , following a Normal distribution

whose unknown mean z̄k is the kth solution to be predicted,

and where we have now Rj ≡ Rz
j/w

z
j : the prediction

procedure is the same as in the forward prediction situation

and will be omitted here for brevity.

V. EXPERIMENTAL RESULTS

In this section we evaluate IMLE in several different

experimental settings, comparing its performance to LWPR

whenever possible, as this is probably the most widely used

state-of-the-art online learning method for robotic applica-

tions. LWPR implementation in C++ is freely available for

download, and the most recent version to this date was used

in our comparisons (Version 1.2.3). Unless otherwise stated,

we keep the default values for LWPR parameters provided

in the example included in their code for the approximation

of the cross function described in the following text, setting

αinit = 250 and wgen = 0.2. Dinit, the initial receptive

field size, is a parameter that greatly affects the performance

and the number of receptive fields created and will be set

separately for each experience. We also adjust LWPR to

update a full metric D, setting the parameter diagOnly to

false.

IMLE has 9 parameters that can be tuned to change the

resulting behaviour of the algorithm: some of them typically

don’t need any tweaking and the following experiences,

unless otherwise noted, will kept them with their default

values, namely: nΛ = 0.1, nσ = 1, nν = 0, α = 0.99
and nΨ = ∞. nΣ will usually be set to a value equal

to 2d, providing a regularization of the input covariance

matrices Σj . The remaining parameters, Ψ0, σ0 and p0, have

a strong influence on the outlier model, and ultimately on the

performance and the number of local experts created during

the training phase1.

A. Multi-valued Function Approximation:

The toy example presented in Figure 1 is an example

of a multi-valued function to be learned, consisting of a

multimap comprising two branches, f1(z) = cos(z) and

f2(z) = 4 + cos(z), for 0 < z < 4π. Standard function

approximation learning methods, like LWPR, GPR or SVM,

will typically fail here, since they all assume the single-

valued model with noise, xi = f(zi) + ǫi. Motivated by the

typical sequential nature of robotic data acquisition, training

data was generated by alternating sequential sweeps over

each of the two branches, and each output xi was corrupted

with Gaussian noise with standard deviation equal to 0.1 —

generating instead training data from random input locations

1Source code in C++ for the IMLE algorithm is publicly available at
http://users.isr.ist.utl.pt/˜bdamas/IMLE.

0 2 4 6 8 10 12 14
−2

−1

0

1

2

3

4

5

6

z (Input)

x
(O

ut
pu

t)

Training Data

LWPR Prediction

IMLE Prediction

IMLE Deviation

Fig. 1. Some training data for the multi-valued function being learned,
together with estimates provided by IMLE and LWPR. Confidence intervals
for IMLE, shown in the figure, correspond to one standard deviation.

did not significantly change the experimental results. Fig-

ure 1 depicts a sample of the training data corresponding to

a single sweep of the multi-function, together with estimates

from both IMLE and LWPR, taken after a training period of

10,000 points. As expected, LWPR behaves poorly, produc-

ing an estimate that is approximately an average of the two

different multi-function branches, together with a very large

prediction variance, not depicted in the figure. Multi-valued

function approximation algorithms like IMLE, on the other

hand, correctly identify the two different solutions for each

input value. In this experiment LWPR created 123 different

linear models during the training phase, while IMLE only

allocated 30 experts.

B. Single-valued Function Approximation:

We ran LWPR on sequential data taken from the cross

function suggested in [5], displayed in Figure 2. This func-

tion (Cross 2D) has a two-dimensional input and a univariate

output. We adopted all the suggested values for LWPR

Fig. 2. The cross 2D function. In the left image the target function
is depicted, together with some training points and their corresponding
projections on the z-plane, in order to enhance the trajectory nature of data
acquisition. To the right is the reconstructed function using IMLE.

parameters presented in the Cross 2D example bundled with

LWPR code, namely Dinit = 50.0. As for IMLE, we chose

σ0 = 0.02 to make the initial input covariance matrix guess

equal to LWPR. We also defined p0 = 0.3 and Ψ0 = 0.01.

Since the output was known to be single-valued, we used

αmulti = 1.0, which resulted in a single-valued solution.

The training set consisted of points sampled from a random

1504

trajectory performed in the input space and corresponding

output data, for which we added white noise with 0.1

standard deviation. To obtain the learning curves we trained

both IMLE and LWPR on a set of 200,000 such points: the

resulting normalized root mean square error (nRMSE) and

number of models created are shown in Figure 3. Evaluation

1,000 10,000 100,000
0

0.02

0.04

0.06

0.08

0.1

0.12

Training Points

n
R

M
S

E

1,000 10,000 100,000
0

10

20

30

40

50

60

N
u

m
b

e
r

o
f

L
in

e
a

r
M

o
d

e
ls

LWPR
IMLE (p

0
 = 0.3)

IMLE (p
0
 = 0.1)

Fig. 3. Learning curves for the Cross 2D function: nRMSE and number
of created models as a function of the number of processed training points.

of nRMSE was performed on a 200 by 200 grid like noiseless

test set, and to increase the accuracy of the results we ran

one hundred different trials with such randomly generated

training sets: Figure 3 shows the average nRMSE and number

of models over these experiments. IMLE achieves an average

nRMSE of less than 0.03, a better result than LWPR, with a

value over 0.04. We also present, for illustrative purposes, the

learning curves for IMLE when p0 = 0.1: as expected, the

average number of experts decreases, and as a consequence

the performance of the algorithm is slightly worse in terms

of nRMSE.

C. The PUMA 560 Serial Manipulator:

In this section we use IMLE to learn direct and inverse

kinematics for the Unimation PUMA 560, a popular six

degrees of freedom industrial robot arm [1]. We use its first

three joints to position the end-effector in the workspace,

while the remaining three are left untouched since they

only control the end-effector orientation. We thus have a

kinematics map to be learned that relates the first three joint

angles vector z to the 3-dimensional end-effector position x.

We simulated a random trajectory in the normalized input

space comprising one million points to use as the training

set, and using Corke’s robotic toolbox for MatLab [19]

we obtained the corresponding output points. The same

procedure was used to obtain the 100,000 points test set.

After that, noise with 2cm standard deviation in each position

coordinate was added to the output of the training set — that

corresponds approximately to 1/100 of the output range.

We trained the IMLE model using α = 0.99, nΨ = 500,

p0 = 0.01 and σ0 = 4; we also set the significance αmulti

for the multivalued test to 0.99. Two different runs were

made, one using a value for Ψ0 equal to 9 times the noise

variance (IMLEA) and the other setting this value to 4 times

the value of the same noise (IMLEB). Results are presented

in Table I. We also present the error achieved by LWPR in the

same setting: two values of Dinit were chosen, Dinit = 20
(LWPRA) and Dinit = 200 (LWPRB) that approximately

match the final number of activated linear models of IMLE,

while αinit was tuned to provide the best error rate. Note

how IMLE outperforms LWPR when learning the forward

single-valued kinematics.

#Models
Forward nRMSE (cm) Inverse nRMSE (%)

x y z θ1 θ2 θ3

LWPRA 200 5.36 5.01 3.56 — — —

LWPRB 475 3.76 3.68 2.73 — — —

IMLEA 151 1.44 1.39 1.03 3.43 3.73 1.43

IMLEB 487 0.83 0.86 0.73 3.08 3.47 1.26

TABLE I

IMLE AND LWPR RESULTS FOR PUMA 560 DATA.

Figure 4 shows the histogram of the number of solutions

found by inverse prediction on the test set, comparing it

to real number of solutions, obtained by explicitly solving

the inverse kinematics equations. The discrepancy between

1 2 3 4 5
0

10

20

30

40

50

60

70

80

Number of Inverse Solutions

Fr
eq

ue
nc

y
(%

)

Effective Number of Solutions

Predicted Number of Solutions

Fig. 4. Frequency of the number of solutions found by IMLE inverse
prediction on the test set.

these numbers can be explained by the fact that close to

the workspace boundary of the PUMA 560 there are pairs

of inverse solutions that become close to each other: in this

situation IMLE tends to merge these solutions. Increasing

αmulti would reduce this behaviour; however, due to the

curvature of the map to learn, this has the undesired side

effect of predictions of neighbour experts being erroneously

taken as separate solutions. Choosing a value for αmulti is

a compromise between this two effects; still, despite this

merged solutions phenomena, IMLE still achieves a good

inverse prediction error rate, since in the workspace boundary

the merged solution provided by IMLE is approximately the

average of two reasonable similar true solutions.

D. A 3-RPR Parallel Robot:

Parallel robots typically exhibit a duality relation to serial

chains with respect to the forward and inverse kinematics

nature: while the their inverse relation is usually unique and

straightforward to calculate, obtaining a closed formula for

the end-effector position and orientation as a function of ac-

tuator values is difficult and frequently yields multiple valid

1505

solutions. The 3-RPR manipulator described for instance

in [2] is an example of such mechanism: it consists of an end-

effector connected to a fixed base through three prismatic

links, each connecting to the base and end-effector using

free, unactuated rotational joints; its movement is restricted

to the x-y plane: actuating on link lengths L1, L2 and L3

changes the end-effector position and orientation on the x-y

plane. This mechanism is known to have up to six different

solutions for the same actuator configuration [2], which

makes learning its forward kinematics unfeasible for most

state-of-the-art nonlinear regression techniques like GPR or

LWPR.

We trained IMLE with a sequence of one million points

taken from a simulated random trajectory in the output space

of this parallel robot: the input vector z consisted of the

three actuated link lengths, while angle θ and x-y coordinates

of the moving platform composed the output vector x.

Movement was restricted to a square of 40cm by 40cm in the

center of the mechanism, while the angle was constrained to

the interval [−π/2;π/2]. We added Gaussian noise to the

outputs, again with standard deviation equal to 1/100 of the

output range. IMLE parameters where the same as the ones

used in the previous experiment, with exception of σ0 = 1.0;

Ψ0 was set to 4 and 9 times the true noise variance, as before.

After the training phase took place, a random sequence of

100,000 test points was presented to the algorithm: forward

and inverse prediction errors are presented in Table II, where,

to calculate both forward and inverse prediction errors, we

picked the predicted solution closest to the previous observed

sample. IMLE found on average 1.8 forward solutions per

#Models
Forward nRMSE (%) Inverse nRMSE (cm)

x y θ L1 L2 L3

IMLEA 92 1.12 1.21 2.31 0.30 0.30 0.31

IMLEB 137 1.07 1.05 1.86 0.26 0.25 0.26

TABLE II

IMLE AND LWPR RESULTS FOR 3-RPR PARALLEL ROBOT DATA.

test point, which, given the constrained workspace, agrees

with the expected number of solutions; inverse prediction

only found a single solution for every point on the test set,

as expected.

VI. DISCUSSION AND CONCLUDING REMARKS

The Infinite Mixture of Linear Models presented in this

text is, at its core, an algorithm that can efficiently deal with

nonlinear function approximation in an online, incremental

manner, with performance comparable to current state-of-

the-art online learning methods. However, where IMLE

performance really shines is in its ability to deal with multi-

valued estimates for the same query data. The applications

for such kind of problems range from simultaneously learn-

ing forward and inverse models of serial and parallel robots

to learning switching models, where the function to be

approximated can alternate between different configurations

over time. To our knowledge this is a distinctive property of

the algorithm presented in this paper.

Further directions of research include the choice of dif-

ferent priors for the regression coefficients in Λj : it is

well known that when higher dimensional input spaces are

considered an increase on the variance of the estimator

for these coefficients is observed, degrading the learning

performance. In these situations LWPR regularization via

PLS may give this algorithm an edge when comparing

performances for single-valued forward prediction. Different

kind of priors have been suggested in the literature to cope

with this problem, and we intend to study how to integrate

them in the IMLE model without increasing the algorithm

computational complexity.

REFERENCES

[1] J. Craig, Introduction to Robotics: Mechanics and Control. Addison-
Wesley Longman Publishing Co., Inc., 1989.

[2] J. Merlet, Parallel robots. Springer-Verlag New York Inc, 2006.
[3] J. Peters and S. Schaal, “Learning Operational Space Control,”

Robotics: Science and Systems (RSS 2006), 2006.
[4] D. Nguyen-Tuong and J. Peters, “Local gaussian process regression

for real-time model-based robot control,” in Intelligent Robots and

Systems, 2008. IROS 2008. IEEE/RSJ International Conference on.
IEEE, 2008, pp. 380–385.

[5] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental Online
Learning in High Dimensions,” Neural Computation, vol. 17, no. 12,
pp. 2602–2634, 2005.

[6] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kine-
matics,” in Intelligent Robots and Systems, 2001. Proceedings. 2001

IEEE/RSJ International Conference on, vol. 1. IEEE, 2001, pp. 298–
303.

[7] Z. Ghahramani and M. Jordan, “Supervised Learning from Incomplete
Data via an EM approach,” Advances in Neural Information Process-

ing Systems 6, 1994.
[8] M. Lopes and B. Damas, “A learning framework for generic sensory-

motor maps,” in Intelligent Robots and Systems, 2007. IROS 2007.

IEEE/RSJ International Conference on. IEEE, 2007, pp. 1533–1538.
[9] R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton, “Adaptive Mixtures

of Local Experts,” Neural Computation, vol. 3, no. 1, pp. 79–87, 1991.
[10] M. Sato and S. Ishii, “On-line EM Algorithm for the Normalized

Gaussian Network,” Neural Computation, vol. 12, no. 2, pp. 407–432,
2000.

[11] D. Grollman and O. Jenkins, “Incremental learning of subtasks
from unsegmented demonstration,” in Intelligent Robots and Systems

(IROS), 2010 IEEE/RSJ International Conference on. IEEE, 2010,
pp. 261–266.

[12] C. Qin and M. Carreira-Perpinán, “Trajectory inverse kinematics by
conditional density modes,” in Robotics and Automation, 2008. ICRA

2008. IEEE International Conference on. IEEE, 2008, pp. 1979–
1986.

[13] L. Xu, M. Jordan, and G. Hinton, “An Alternative Model for Mixtures
of Experts,” Advances in Neural Information Processing Systems, pp.
633–640, 1995.

[14] R. Neal and G. Hinton, “A view of the EM algorithm that justifies
incremental, sparse, and other variants,” Learning in graphical models,
pp. 355–368, 1999.

[15] O. Cappé and E. Moulines, “Online EM Algorithm for Latent Data
Models,” Journal of the Royal Statistical Society: Series B (Statistical

Methodology), vol. 71, no. 3, pp. 593–613, 2009.
[16] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from

Incomplete Data via the EM Algorithm,” Journal of the Royal Sta-

tistical Society. Series B (Methodological), vol. 39, no. 1, pp. 1–38,
1977.

[17] E. Meeds and S. Osindero, “An alternative infinite mixture of gaus-
sian process experts,” in Advances in Neural Information Processing

Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge,
MA: MIT Press, 2006, pp. 883–890.

[18] A. Gelman, J. Carlin, H. Stern, and D. Rubin, “Bayesian Data
Analysis,” Champan and Hall/CRC, 2004.

[19] P. Corke, “Matlab toolboxes: robotics and vision for students and
teachers,” Robotics & Automation Magazine, IEEE, vol. 14, no. 4,
pp. 16–17, 2007.

1506

