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ABSTRACT

Active shape models (ASM) have been extensively used in
object segmentation problems because they constrain the so-
lution, using shape statistics. However, accurately fitting an
ASM to an image prone to outliers is difficult and poor results
are often obtained. To overcome this difficulty we propose
a robust algorithm based on the Expectation-Maximization
framework that assigns different weights (confidence degrees)
to the observations extracted from the image. This reduces
the influence of outliers since they often receive low weights.
We tested the proposed algorithm with synthetic and real im-
ages (e.g., lip images and cardiac ultrasound images) achiev-
ing promising results. The proposed algorithm performs sig-
nificantly better than the standard ASM implementation.

Index Terms— Active shape models, image segmenta-
tion, expectation-maximization

1. INTRODUCTION

The segmentation of an object in an image is a complex task
that is required in many applications. A popular method is
the Active Shape Model (ASM), proposed by Cootes et. al
[1], which uses a trained shape model to impose shape con-
straints in the segmentation. However, fitting shape models to
data with outliers may result in poor segmentations [2]. We
propose to combine the statistical shape model used in ASM
with a robust estimation of the model parameters, which takes
outliers into account by assigning to each observation a soft
label that measures the probability of being a valid observa-
tion.

There has been extensive research on improving the
boundary detection methods [3, 4, 5, 6, 7, 8], to avoid de-
tecting outliers. However, in some cases it is inevitable.

Alternatively, some works have tried to improve the ASM
by finding a combination of boundary points that best fits the
expected segmentation. One way to do this is to consider the
optimization of an objective function[9, 10, 5, 7] that weights
two terms: one that measures the quality of fit between the
model and the image, and promotes segmentations along ob-
servation points with specific features (e.g., edge points or
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points with particular appearance features); and a second term
that penalizes unexpected shapes. Another way is to try to
exclude outliers from the observation points by: using match-
ing algorithms to determine the best match between model
and observation points [11]; or using random sampling algo-
rithms to select the best subset of observation points required
to estimate the model parameters [2].

We propose a new method for fitting a shape model to
an image using a robust probabilistic framework similar to
the one proposed in [12]. However, a drawback in [12] is
that the model does not have shape constraints, since a sta-
tistical shape model is not used. This new approach con-
siders that true boundary points and background points (out-
liers) can both be detected in the vicinity of the model, and
the model parameters are estimated using the Expectation-
Maximization (EM) algorithm [13]. The proposed method
supports multiple candidates for the object boundary position
for each model point (some of which will be outliers), which
means the segmentation will not be so dependent on the ac-
curacy of the feature detection method.

The paper is organized as follows. Section 2 describes
the problem. The proposed EM framework is described in
Section 3. Examples of applications and statistical results are
given in Section 4. Finally, Section 5 concludes the paper.

2. PROBLEM FORMULATION

Consider a training set of 2D contours, each of them char-
acterized by N samples x = (x11 x12 . . . xN1 xN2 )T . A
shape model can be learned by[1]: 1) aligning all the shapes
into a common referential (shape space) and 2) performing
a Principal Component Analysis (PCA) to find the modes
of variation. The ASM method assumes that a contour in
the shape space can be approximated by the average contour
x̄ = (x̄11 x̄

1
2 . . . x̄

N
1 x̄N2 )T , deformed by a linear combination

of the K main modes of variation D ∈ R2N×K

x ' x̄ + Db, (1)

where vector b ∈ RK contains the deformation parameters.
Therefore, the i-th point in the contour model is described by

xi ' x̄i + Dib, (2)

where Di is a 2 × K matrix with the lines of D associated
to xi. An object shape is represented by applying a affine



transformation Tθ with parameters θ = {a1, a2, t1, t2} such
that each point, xi, is transformed as

x̃i = Tθ(xi) = Axi + t

=

[
a1 −a2
a2 a1

] [
xi1
xi2

]
+

[
t1
t2

]
, (3)

where x̃i denotes the transformed point.
Let us now assume that we have an initial guess for the

contour configuration. Each model point x̃i searches for the
object boundary in its vicinity1. All detected 2D points that
can potentially belong to the object boundary are kept and
denoted as observation points. The number of observation
points, Mi, found in the vicinity of x̃i may be different for
each point, i.e., in general Mi 6= Mj , for i 6= j.

It is impossible to know which observation points truly
belong to the object boundary and which of them are outliers.
To face this, we consider two possible observation models:
one for the valid observations belonging to the object bound-
ary, which will be denoted by the label k = 1; and one for the
outliers, associated to k = 0.

Let yij =
(
yij1 yij2

)T
be the j-th observation point de-

tected in the vicinity of x̃i. If yij is a true boundary point,
then kij = 1 and

yij = Tθ(xi) + vi

= Tθ(x̄i + Dib) + vi, (4)

where vi ∼ N (0, σi2I) is white Gaussian noise and σi2I is
the variance of xi estimated from the training set. It follows
that

p(yij | kij = 1) = N (yij ; Tθ(x̄i + Dib), σi
2I), (5)

where N (·;µ,Σ) denotes a normal distribution with mean µ
and covariance matrix Σ. If, on the other hand, the observa-
tion point is an outlier, then kij = 0 and we assume yij fol-
lows a uniform distribution within a region Vx̃i , in the vicinity
of x̃i,

p(yij | kij = 0) = U(Vx̃i). (6)

In order to determine the location of the true object boundary
points, we have to simultaneously estimate the transformation
parameters θ, the deformation parameters b, and label asso-
ciated to each observation point, kij . We next describe how
this is performed.

3. EM ALGORITHM - THE COMPLETE
LIKELIHOOD

The problem described in the previous section can be solved
using the EM algorithm [13], which iteratively updates the
transformation and deformation parameters by maximizing
the expectation of the complete log-likelihood function.

We assume that the shape model was initialized. Let Y =
{yij} be the set of all the detected observation points and

1In this paper we searched along lines orthogonal to the model at x̃i, but
other approaches can also be used.

K = {kij} be the labels of the models associated to Y. As-
suming independence among the observations, we can write
the complete log-likelihood as

l(θ, b,Y,K) = log p(Y,K | θ, b)

=

N∑
i=1

Mi∑
j=1

log p(yij | kij , θ, b) + log p(kij).(7)

The probability of the kij-th model, p(kij), provides in-
formation about the expected percentage of outliers and true
boundary points. We will denote p(kij = 1) as c1, and
p(kij = 0) as c0, in the following equations.

3.1. E-step

Let θ̂, b̂, ĉ0, ĉ1 be initial guesses of the parameters θ,b, and
models probabilities c0, c1, respectively. Given a set of obser-
vations Y, the expectation of the complete log-likelihood is as
follows

Q(θ, b, θ̂, b̂) = Ek
[
l(θ, b,Y,K) | Y, θ̂, b̂

]
=

N∑
i=1

Mi∑
j=1

wij0

[
log p(yij | kij = 0) + log c0

]
+

+ wij1

[
log p(yij | kij = 1, θ, b) + log c1

]
, (8)

where wij0 + wij1 = 1 and

wij1 = p(kij = 1 | yij , θ̂, b̂) ∝ ĉ1p(yij |kij = 1, θ̂, b̂)

∝ ĉ1 N (yj | Tθ̂(x̄i + Dib̂), σi
2I) (9)

wij0 = p(kij = 0 | yij) ∝ ĉ0 U(Vx̃i). (10)

3.2. M-step

The maximization step updates θ = {a1, a2, t1, t2} and b so
that they maximizeQ(θ,b, θ̂, b̂) in (8). This is done by taking
its derivative with respect to each parameter and equating to
zero. We simplify this step by sequentially updating the trans-
formation and deformation parameters as follows: 1) com-
pute â1, â2, t̂1, t̂2, assuming b fixed; 2) compute b̂ assuming
a1, a2, t1, t2 fixed; and finally 3) update the probabilities of
each model c0, c1. These steps can be solved using standard
matrix calculus and are briefly described next.

3.2.1. Update of the Transformation Parameters

Let xi = (xi1 x
i
2)T = x̄i + Dib̂, where b̂ is fixed (previous

estimate). Updating the affine transformation parameters is
accomplished by solving the linear system of equations

X1 −X2 W 0
X2 X1 0 W
Z 0 X1 X2

0 Z −X2 X1




â1
â2
t̂1
t̂2

 =


Y1

Y2

C1

C2

 , (11)



where

X1 =
N∑
i=1

Mi∑
j=1

w
ij
1
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i
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Mi∑
j=1

w
ij
1

σi2 (xi1
2

+ xi2
2
)

X2 =
N∑
i=1

Mi∑
j=1

w
ij
1

σi2 x
i
2 W =

N∑
i=1

Mi∑
j=1

w
ij
1

σi2

Y1 =
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Mi∑
j=1

w
ij
1

σi2 y
ij
1 C1 =

N∑
i=1

Mi∑
j=1

w
ij
1

σi2 (xi1y
ij
1 + xi2y

ij
2 )

Y2 =
N∑
i=1

Mi∑
j=1

w
ij
1

σi2 y
ij
2 C2 =

N∑
i=1

Mi∑
j=1

w
ij
1

σi2 (xi1y
ij
2 − xi2y

ij
1 ).

3.2.2. Update of the Deformation Parameters

Using the updated transformation parameters computed in
(11), and after straightforward manipulations, the deforma-
tion coefficients are updated by solving the linear system(

N∑
i=1

Mi∑
j=1

wij1
σi2

DiT Â
T

ÂDi
)

b̂ =

(
N∑
i=1

Mi∑
j=1

wij1
σi2

DiT Â
T
[
yij − Âx̄i − t̂

])
. (12)

Since we want b̂ to correspond to a plausible shape[1],
we compute the Mahalanobis distance, d, and rescale b̂ if it
exceeds a threshold dmax (typically, dmax = 3)

b̂← b̂dmax

d
if d2 =

K∑
l=1

b̂2l
λl

> d2max, (13)

where λl is the eigenvalue associated to the l-th deformation
mode.

3.2.3. Update of the Models Probabilities

The final step updates the probabilities of each model, ĉ0, ĉ1.
Maximizing Q(θ,b, θ̂, b̂) with respect to c0 and c1 yields

ĉ1 =
1

N∑
i=1

Mi

N∑
i=1

Mi∑
j=1

wij1 , ĉ0 = 1− ĉ1. (14)

Summarizing, given initial guesses of a1, a2, t1, t2, c1, c2
and b, the proposed algorithm fits the shape model to a test
image by: i) Searching for boundary points in the vicinity of
the model; ii) Computing the observation probabilities wij1
and wij0 using (9) and (10); iii) Updating the transforma-
tion parameters a1, a2, t1, t2 using (11); iv) Updating the de-
formation parameters b using (12) and (13); and v) Updat-
ing the models probabilities c1 and c0 using (14). This pro-
cess is repeated until no significant changes are observed in
the contour. This algorithm will be denoted as Expectation-
Maximization Robust Active Shape Model (EM-RASM).

4. RESULTS

The EM-RASM was tested in synthetic and real images. In
all the tests, the contour was initialized with the average shape

Fig. 1. Segmentation of synthetic images of a rectangle: (top row)
corrupted by white Gaussian noise and (bottom row) corrupted by
black regions. The blue lines show the contour model and the red
dots show the observation points (in the last iteration).

x̄i (i.e., b = 0). The transformation parameters were obtained
by aligning the average shape x̄ with a contour obtained by
human input. In each subsequent iteration, the observation
points were detected by searching for edge points along lines
orthogonal to the model at each model point. The feature
detection algorithm used in this work was the match filter de-
scribed in [14] (section 5.2). The results are compared with
the standard ASM implementation (as described in [1]). We
evaluate the segmentations by comparing estimated contour
against the ground truth. The Dice coefficient [15], is used to
measure the similarity between the two contours.

4.1. Synthetic Images

The algorithm was evaluated using synthetic images. In these
examples, the shape model learning was performed using syn-
thetic data generated by adding random Gaussian perturba-
tions to the true object shape x̄. Particularly, each training
example x ∈ R2N×1 was a realization of

x = x̄ + v , v ∼ N (0, σ2
trainI) (15)

where σtrain = 2 is the standard deviation imposed on the
synthetic model points. These contours were used to train the
shape model.

The synthetic images were obtained from an initial bi-
nary image of a rectangle, with intensity value 1 inside the
rectangle and 0 outside. Figure 1 shows the output of the
EM-RASM and the output of the standard ASM in the two
examples. In the first example (top row), the rectangle im-
age was corrupted by white Gaussian noise with zero mean
and variance σ2

noise = 0.5. The figure shows that the pro-
posed algorithm was able to converge towards the true object
boundary despite the detection of a large amount of outliers,
whereas the standard ASM was unable to cope with the out-
liers. Recall that the observation points in the standard ASM
correspond to the strongest image edge in the vicinity of each
model point, which explains the difference in the amount of
observation points.



Fig. 2. Segmentation of the left ventricle (left) and lip (right). The dashed green line shows the ground truth, the blue lines show the contour
model, and the red dots show the observation points (in the last iteration)

Table 1. Performance statistics using the Dice coefficient (average
value and standard deviation) for the ASM and EM-RASM.

ASM EM-RASM
LV 0.83 (0.05) 0.87 (0.04)

Lips 0.73 (0.07) 0.79 (0.10)

The second synthetic example in Figure 1 (bottom row)
shows the same rectangle image corrupted by black regions.
These regions create new edges in the image with greater gra-
dient than the true object boundary. The example shows that
the presence of outliers caused the standard ASM to incor-
rectly segment the image. Using the proposed approach, the
model also detected outliers and true boundary points but was
able to segment the image correctly.

4.2. Segmentation of the Left Ventricle

The EM-RASM was tested in a medical application - the seg-
mentation of the left ventricle from 2D ultrasound image se-
quences. The dataset is composed of five 2D sequences (five
different patients), each with 16-20 frames. The shape model
was trained using the medical annotations of the left ventri-
cle contour (ground truth), using a leave-one-sequence-out
scheme, i.e., training with four sequences and testing in a
fifth. Figure 2 (left) shows some examples of the segmenta-
tions obtained with EM-RASM and with the standard ASM.
The initial model parameters were the same in both cases for
each frame of the test sequence. The proposed method per-
formed better than the ASM and was robust in the presence
of outliers. Furthermore, the model was able to cope with
poor initial guesses (left column). Table 1 (first row) presents
statistical results of the segmentation accuracy, showing a sig-
nificant improvement over the standard ASM.

4.3. Segmentation of the Lip

We also show results of the algorithm applied to lip segmenta-
tion in face images. We used four sequences from the neutral
expression samples of the Cohn-Kanade expression database
[16], each with 10-20 frames. Similarly to the previous case,
the shape model was trained using a leave-one-sequence-out
scheme. Figure 2 (right) shows three examples where the EM-
RASM was able to overcome the presence of outliers and ac-
curately segment the lips. These images are also particularly
prone to the detection of outliers (e.g., due to shadows, teeth,
nose), which hampered the standard ASM fitting process. Ta-
ble 1 (second row) confirms this by showing an increase in
accuracy using the proposed approach.

5. CONCLUSION

This paper combines Active Shape Models (ASM) with ro-
bust estimation of the model pose and deformation using an
outlier model. The estimation of the model parameters is
achieved using the EM method, that weights each observation
point by its probability. We show that this approach, denoted
as EM-RASM, is more robust to outliers and leads to a sig-
nificant increase in accuracy when compared to the standard
ASM implementation, both in synthetic and real data. We
also show evidences that the EM-RASM is able to cope with
initialization mistakes, which is often a setback in deformable
model systems.

Future work should focus on extending the proposed
framework to more reliable observations, such as edge strokes
[12]. Since edge points along the same edge often belong to
the same object in the image, the computation of the weights
associated to the observations can be improved.



6. REFERENCES

[1] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Gra-
ham, “Active shape models-their training and applica-
tion,” Computer vision and image understanding, vol.
61, no. 1, pp. 38–59, 1995.

[2] M. Rogers and J. Graham, “Robust active shape model
search,” in Computer VisionECCV 2002, pp. 517–530.
Springer, 2006.

[3] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active ap-
pearance models,” Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, vol. 23, no. 6, pp. 681–
685, 2001.

[4] M. Wimmer, K. Stulp, S. Pietzsch, and B. Radig,
“Learning local objective functions for robust face
model fitting,” Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. 30, no. 8, pp. 1357–
1370, 2008.

[5] D. Cristinacce and T. F. Cootes, “Automatic feature
localisation with constrained local models,” Pattern
Recognition, vol. 41, no. 10, pp. 3054–3067, 2008.
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