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ABSTRACT
The 3D segmentation of the left ventricle (LV) in cardiac
MRI is a challenging problem, due to the presence of other
anatomical structures and artifacts (outliers) around the LV.
In this paper, a new formulation of a Robust Active Shape
Model (RASM) is presented that is able to deal with those
outliers. Instead of using the traditional one-to-one mapping
of edge points and model points to compute the shape model
parameters, the proposed approach uses a one-to-many map-
ping strategy and groups these edge points into edge segments
(strokes). Then, a probabilistic framework provides a robust
estimation of the model parameters, in which the influence in
the segmentation of the unreliable outliers is reduced. The
proposed method was tested on a public dataset comprising
660 volumes. The results indicate that this methodology pro-
vides accurate segmentations that are competitive with other
state-of-the art methods.

Index Terms— 3D Segmentation, Cardiac MRI, Active
Shape Model, Expectation-Maximization

1. INTRODUCTION

Several left ventricle (LV) segmentation algorithms for car-
diac MRI have been proposed in the last decade [1], with the
goal of relieving cardiologists of the tedious task of manually
tracing the LV border to assess cardiac function of a patient.
However, many of these algorithms struggle with distinguish-
ing the LV border from other anatomical structures, such as
the papillary muscles, leading to incorrect segmentations.

Shape models, such as the Active Shape Model (ASM)
[2], have been a popular approach to prevent unexpected
shape estimates in the segmentation [3, 4, 5, 6]. An ASM
based approach comprises two phases: 1) a training phase, in
which the expected shape and variation of the LV are learned
from training data; and 2) a test phase, in which the learned
shape model is used to guide the segmentation of new data. In
the latter, after initializing the model, candidate border points
are extracted from the image and used to estimate the ASM
parameters that fit the model to the desired border. Despite
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being powerful segmentation tools, the accuracy of ASMs
depends on the image quality and is usually low in the pres-
ence of outliers [7]. Alternative approaches have proposed
robust active shape models (RASM) to deal with this issue
[7, 8], that are able to disregard the outliers in the image either
by using only a subset of the candidate border points or by
weighting them according to some criteria.

In this work, a new Bayesian formulation for a RASM is
proposed for 3D segmentation of the LV, inspired in the 2D
robust estimation method proposed in [8]. In this new for-
mulation, the candidate border points in each MRI slice are
first grouped into edge segments, denoted as strokes. Then,
the strokes from the whole MRI volume are used to guide
the segmentation using an Expectation-Maximization frame-
work. This means that more reliable information is provided
to the RASM, thus improving its accuracy.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the proposed formulation. Section 3 provides
the experimental setup to evaluate the proposed method and
shows the obtained results. Finally, Section 4 concludes the
paper with final remarks.

2. ROBUST ACTIVE SHAPE MODEL

As mentioned above, an ASM based approach requires a
training phase to learn the expected shape and the main
modes of deformation. The procedure used in this work for
the training phase is based on the method proposed in [6],
which allows a shape model to be learned from MRI volumes
with a variable number of slices. Using this approach, the LV
segmentation in a particular slice, m, is given by the contour
model x̃(sm) =

[
x̃1(sm)>, x̃2(sm)>, . . . , x̃N (sm)>

]> ∈
R2N×1, where sm is the position of the m-th slice along the
LV axis, N is the number of points in the model. The 2D posi-
tion of the i-th model points x̃i(sm) =

[
x̃1
1(sm), x̃1

2(sm)
]> ∈

R2 is given by

x̃i(sm) = A(xi(sm) +Di(sm)b(sm)) + t, (1)

where xi(sm) ∈ R2×1 is the expected position of the i-th
model point, Di(sm) ∈ R2×K is the matrix of the K main
modes of deformation of the i-th model point, b(sm) ∈ RK×1



are the deformation coefficients, A is a rotation and scaling
matrix with parameters a = [a1, a2]>, and t = [t1, t2]> are
the translation parameters.

During the test phase, the goal is to determine the best
model parameters θ = {a, t, b(s1), . . . , b(sS)}, such that
x̃(sm),m = 1, . . . , S, fits the LV border in all of the S slices
of the test volume. Assuming an initial guess of the model pa-
rameters θ has been provided, the segmentation process starts
by extracting candidate border points from the volume slices.
In this work, these candidate points, denoted as observations,
are obtained by detecting edge points along search lines or-
thogonal to the contour model, using the same edge detector
as [8]. Fig. 1 (left) shows an example of the detected edge
points (red dots) in a particular slice of the MRI volume.

Since most of these edge points belong to a common edge
in the image, using them separately to estimate the model
parameters is not taking advantage of all the information
available. Therefore, the detected edge points are grouped
into edge segments, denoted as strokes, using the Mutual
Favorite Pairing algorithm [9]. This algorithm determines if
two individual edge points should belong to the same group if
they mutually the best match according to a distance criteria,
which in this work is defined by the difference between the
signed distance of the edge point to the corresponding model
point (i.e., the model point located along the same search
line). Fig. 1 (middle) shows the strokes obtained from the
edge points extracted from the images (left). Note that not
all the detected strokes correspond to the LV border. Some
strokes are outliers associated with papillary muscles (within
the LV) and with the epicardium, that should not be consid-
ered for the segmentation. The next section describes the
observation models used to explain the relationship between
the model points and both types of strokes.

2.1. Observation Model

Let Y(sm) = {Y 1(sm), . . . ,Y Pm

(sm)} denote the set of all
the detected strokes on the m-th slice. The i-th stroke is given
by M i edge points,Y i(sm) =

[
yi1(sm)>, . . . ,yiMi

(sm)>
]
∈

R2Mi×1, where yij(sm) ∈ R2×1 is the position of the j-th
edge point in the i-th stroke. Also, letXi(sm) ∈ R2Mi×1 de-
note the corresponding model segment comprising the model
points, x̃ij(sm), j = 1, . . . ,M i. Fig. 1 (right) shows an
example for the third stroke, Y 3(s5), located on the slice
m = 5. If all the detected strokes were used to determine the
shape model parameters, the resulting segmentation would
try to fit the valid strokes (located along the LV border) and
the invalid ones (outliers) simultaneously, leading to incorrect
estimates of the LV border.

Since we do not know which strokes are valid and which
are outliers, two observation models are considered. Let
ki(sm) be an unknown binary label associated with the i-
th stroke, such that ki(sm) = 1 if Y i(sm) is valid, and

ki(sm) = 0 otherwise. For valid strokes, we assume that
each edge point in that stroke is given by

yij(sm) = x̃ij(sm) + vij(sm), (2)

where vij(sm) ∼ N (0,Σij(sm)) is a zero mean white Gaus-
sian noise with diagonal covariance matrix Σij(sm). As-
suming statistical independence between the edge points in
a stroke, it is possible to conclude that the probability of the
i-th stroke, Y i(sm), knowing ki(sm) = 1 is

p
(
Y i(sm)

∣∣ki(sm)=1,Θ
)

=

Mi∏
j=1

p
(
yij(sm)

∣∣ki(sm)=1,Θ
)

=

Mi∏
j=1

N
(
yij(sm); x̃ij(sm),Σij(sm)

)
. (3)

On the other hand, outlier strokes are assumed to follow a
uniform distribution

p
(
Y i(sm)

∣∣ki(sm)=0,Θ
)

=

Mi∏
j=1

U(Vx̃ij(sm)), (4)

within a validation gate Vx̃ij(sm) in the vicinity of x̃ij(sm).
Finally, we assume that the two labels, ki(sm) = 1 and
ki(sm) = 0, occur with probabilities P (ki(sm) = 1) = p1
and P (ki(sm) = 0) = p0, respectively, with p0 + p1 = 1,
which are also unknown.

Using the above formulation, the segmentation of the LV
is obtained by finding the parameters Θ = {θ, p0, p1} that
maximize the joint probability

P(Y ,K,Θ) = log p(Y ,K,Θ)

= log p (Y |K,Θ) + log p(K) + log p(Θ),
(5)

where Y = {Y(s1), . . . ,Y(sS)} is the set of all the de-
tected strokes in all the slices of the volume, and K =
{K(s1), . . . ,K(sS)} is the set of the corresponding labels,
where
K(sm) = {k1(sm), . . . , kP

m

(sm)}. Assuming that the
strokes are conditionally independent, (5) can be rewritten as

P(Y ,K,Θ) =

S∑
m=1

Pm∑
i=1

Mi∑
j=1

log p
(
yij(sm)

∣∣ki(sm),Θ
)

+ log p(ki(sm)) + log p(Θ). (6)

The first term corresponds to the likelihood of the strokes,
the second term is the probability of the observation model,
ki(sm), and the last term is related to a prior probability for
Θ, which in this work is defined as in [8].

Since the analytical maximization of (6) is infeasible, the
Expectation-Maximization (EM) algorithm is used. The fol-
lowing section describes EM framework for this problem.
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Fig. 1. Strokes detected in a volume slice: (left) detection of multiple edge points along lines orthogonal to the contour model; (middle) edge
points grouped into strokes; (right) zoom on a particular stroke.

2.2. Expectation Maximization algorithm

The EM algorithm obtains the maximization of (6) by iterat-
ing between two steps: 1) E-step, in which the expectation of
the (6) is updated by computing the probability of each stroke
based on the current parameters; and 2) M-step, in which the
parameters are updated by maximizing the expectation ob-
tained in the E-step.

Let Θ̂(t) denote the current estimate of the model param-
eters, where Θ̂(0) is the initial guess provided by the initial-
ization. At each iteration, a new set of strokes, Y , is extracted
from the volume. In the E-step, an auxiliary function is de-
fined as

Q
(
Θ; Θ̂(t)

)
= EK

[
P(Y ,K,Θ)

∣∣∣Y , Θ̂(t)

]
, (7)

where EK[·] denotes the expectation over the two observation
models. Combining (7) with (3) and (4) leads to

Q
(
Θ; Θ̂(t)

)
∝ c + log p(Θ)

+

S∑
m=1

Pm∑
i=1

Mi∑
j=1

wi
0(sm)

[
logU(Vx̃ij(sm)) + log p0

]
+ wi

1(sm)
[(
yij(sm)−A (x(sm) +D(sm)b(sm))− t

)>
Σij−1(sm)

(
yij(sm)−A (x(sm) +D(sm)b(sm))− t

)]
,

(8)

where wi
0 and wi

1 denote the confidence degree of each stroke,
such that wi

0(sm) + wi
1(sm) = 1 and

wi
1(sm) ∝ p̂1(t) N

(
yij(sm); x̃ij(sm),Σij(sm)

)
(9)

wi
0(sm) ∝ p̂0(t) U

(
Vx̃ij(sm)

)
. (10)

These weights correspond to the probability of ki1(sm) and
ki0(sm) being the correct label for stroke Y i(sm), given the
current model estimate.

In the M-step, the model parameters are updated by solv-
ing the optimization problem

Θ̂(t+1) = arg max
Θ

Q
(
Θ; Θ̂(t)

)
. (11)

We simplify this optimization by maximizing first with re-
spect to the transformation parameters, a, t, and only then for
b(s1), . . . , b(sS) and p0 and p1. In all the cases, the update
equations are obtained by taking the straightforward deriva-
tive of (8) with respect to each parameter, leading to linear
systems of equations (as in [8]). However, the difference
in this case is that each edge point in a stroke has the same
weight, wi

1(sm), computed in (9). In the case of the transfor-
mation parameters, a, t, and the model probabilities, p0, p1,
all the slices in the volume contribute to their estimation,
while the deformation parameters in the m-th slice, b(sm)
are computed using only the strokes detected in that slice.
In practice, the update equations correspond to a weighted
least squares solution to the problem of determining a one-
to-many mapping between strokes extracted from the volume
and the corresponding model points. The weight of each
stroke, wi

1(sm), determines its contribution to the estimation
of the parameters based on the probability of being a valid
stroke. Consequently, the model iteratively updates towards
fitting the strokes with higher probabilities. The segmenta-
tion process stops once the changes in parameters from one
iteration to the next is below a specific threshold.

3. RESULTS

To evaluate the proposed method, a public dataset of cardiac
MRI [3] is used. This dataset consists of MRI sequences of
20 volumes for 33 patients (most of them diseased), with a
total of 660 volumes to be segmented. Annotations of the LV
segmentation are provided and are used as ground truth (GT).
Each volume has 4-10 slices in which the LV is visible (the
remaining slices are disregarded) and each volume slice is a
256× 256 image with 0.9− 1.6 mm/pixel of resolution. The
spacing between slices is 6-13mm.

The training and test phases are performed in a cross val-
idation fashion, i.e., for each test sequence, the remaining
32×20 annotated volumes are used to learn the shape model.
Each volume in the test sequence is segmented independently,
which means that no tracking information is used. The ini-
tialization of the transformation parameters, t is obtained by



human input of the rough location of the LV center in the
basal slice, and the other parameters are set to â2(0) = 0,
b̂(0)(sm) = 0 and p̂0(0) = p̂1(0) = 0.5. The quantitative
evaluation is based on two metrics: 1) the Dice similarity co-
efficient; and 2) the average perpendicular distance (AV).

Fig. 2 shows examples of the segmentations obtained and
the corresponding manual annotations for 4 slices of 5 differ-
ent volumes. It is possible to see that the automatic segmen-
tation is similar to the GT in most cases. Table 1 shows the
overall statistical results of the proposed method and presents
a comparison with other state of the art methods. The table
shows that the proposed approach outperforms the standard
3D ASM [2], as well as the approach used in [6]. Further-
more, it achieves competitive results against the LV endo-
cardium segmentation method proposed in [10] (see perfor-
mance for “all” in Table 1, p. 605)1 and the method proposed
in [11] (see Table 1, p. 6). Note that the results from [10] and
[11] were obtained on other datasets.

Table 1. Comparison of the statistical performance. The last col-
umn shows the percentage of volumes used to obtain the results (vol-
umes with AV < 5 mm were excluded). Dashed entries mean all
volumes were included.

Dice (%) AV (mm) % Good
Cootes et al. [2] 73 ± 13 4.7 ± 3.0 -

Santiago et al. [8] 79 ± 8 3.5 ± 1.4 -
Huang et al. [10] 89 ± 4 2.2 ± 0.5 81.5 ± 18.0
Gopal et al. [11] 84 ± 4 3.7 ± 0.6 -

Proposed 80 ± 7 3.3 ± 1.2 -
83 ± 6 2.6 ± 1.1 84.8

4. CONCLUSION

A new formulation for a robust active shape model is pro-
posed for 3D segmentation of the LV in cardiac MRI. The
proposed approach extends a previous approach [8] to 3D
data and uses edge segments (strokes) extracted from the vol-
ume slices to guide the segmentation, instead of the tradi-
tional edge points. The results show that the proposed al-
gorithm provides accurate segmentations that are competitive
with other state-of-the art methods.
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