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Doctor José Alberto Rosado dos Santos Victor, Professor Catedrático do Instituto Superior
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Abstract

This thesis presents a developmental approach to language learning in humanoid robots. The

objectives are both to find more flexible methods for language learning in machines, and to

learn more about how infants acquire their language.

The proposed method takes an ecological approach, where language learning does not de-

pend on any pre-programmed linguistic knowledge such as given phonemes or labeled speech

data. Instead an initial set of words is learnt through general pattern matching techniques,

by mimicking adult-infant interactions, and by taking advantage of the multimodal nature

and the inherent structure of infant directed speech (IDS).

In parallel, initial speech units are learnt through imitation games, where the robot and a

caregiver take turn imitating each other. These imitation games not only allow the robot to

find useful speech sounds, but also to create an audio-motor map. This map works as ”mirror

neurons”, allowing the robot to find the vocal tract positions used to produce a given speech

sound, which is useful not only to reproduce the sound, but also to recognize the same.

Finally, initial words and speech units are combined in a statistical model, allowing the

robot to overcome the limitations of the initial models.

Keywords: humanoid robots, language acquisition, developmental approach, ecological

methods, imitations, mirror neurons
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Resumo

Esta tese representa uma abordagem evolutiva da aprendizagem da linguagem em robots hu-

manóides. Os objectivos são: (i) encontrar métodos mais flex́ıveis que facilitam a aprendiza-

gem da linguagem em maquinas, e (ii) aprender mais sobre o desenvolvimento da linguagem

nas crianças.

O método proposto utiliza uma abordagem ecológica onde a aprendizagem de linguagem

não depende de conhecimentos lingúısticos pré-programados, como fonemas. Em vez disso,

um inicial conjunto de palavras é aprendido através de técnicas gerais como reconhecimento

de padrões, imitando a interacção entre adultos e crianças e utilizando a natureza multimodal

e estructura inerente do sinal dirigido às crianças.

Em paralelo, pseudo-fonemas são aprendidos através de jogos de imitações, onde o robot e

o caregiver fazem turnos em imitar um do outro. Além disso, estes jogos servem para criar um

mapa entre o som e os posições motoras utilizados para criar o mesmo. Este mapa funciona

como neurónios-espelho, que permite o robot encontrar posições do tracto vocal utilizados

para produzir um som. Isto é útil, não só para reproduzir o dado som, mas também para

reconhecer o mesmo.

Em seguida, as palavras e os pseudo-fonemas são combinados num modelo estat́ıstico,

que permite superar as limitações dos modelos iniciais.

Palavras-chave: robots humanóides, abordagem evolutiva, métodos ecológicos, imitações,

neurónios-espelho
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Chapter 1

Introduction

This thesis proposes a developmental approach to language learning in humanoid robots that

mimics some of the learning processes found in infants.

Spoken language is a powerful tool for human interactions, and potentially so also for

human-machine interfaces. Advances in the area of automatic speech recognition (ASR)

have made voice interfaces increasingly popular. When used in a controlled environment or

for smaller vocabularies, state-of-the-art ASR-systems can already match or even improve on

human word error rates. However, despite of all research effort in the area, current machines

are still far from human language capabilities in terms of robustness and flexibility when

used in more natural settings. Some of the main challenges are interspeaker differences,

coarticulations, and out-of-vocabulary words. The main approach used to address those

challenges has been to use more computing power and increase the speech database that is

used to train the existing language models. Unfortunately, the difficulties may not be a result

of insufficient processing power or insufficient speech samples, but rather a fundamental flaw

in the architecture of current models [87]. Compared with current approaches to language

learning in machines, infants are able to acquire impressive language skills from very little

speech exposure.

A humanoid robot, which needs to work in a more natural environment, may therefore

benefit from an alternative approach to language learning with learning capabilities more

similar to those of an infant. While infants’ learning capabilities are well documented, it is

still far from completely understood how they are able to learn those. The European project

Contact [17], in which part of this thesis has been developed, has addressed this by studying

the coupling between production and perception and by exploring parallels between learning

to speak and learning to make hand gestures. This is a multidisciplinary project that includes

researchers from different areas such as linguistics, psychology, neuroscience, and engineering.

Built on the knowledge in this project, the role of this thesis has been to develop language

1



2 CHAPTER 1. INTRODUCTION

acquisition capabilities with biological plausibility in an artificial system. Especially, this

thesis combines two lines of research: (i) the ecological or emergent approach to language

learning, and (ii) the use of motor primitives for imitations and speech recognition.

According to the ecological and emergent approach to language learning, the infant’s

linguistic and phonetic knowledge evolve gradually as the infant is forced to deal with an

increasing amount of information [73]. It is assumed that no innate linguistic or phonetic

knowledge, such as phonemes or grammar, is needed in order to acquire the initial language

capabilities. This assumption is debated, and nativists argue that some universal knowledge

about language must be present already at birth [16]. It is also a strong contrast to the

typical approach used in todays computer-based systems where phoneme and word models

are preprogrammed and trained with large databases containing labeled speech examples of

individual phonemes and words. Following the ecological approach it is instead necessary to

make use of the linguistic cues and structures available directly in the speech signal, and to

extract the relevant parts of the signal using general information processing principles, such as

detecting recurrent patterns. While this is a challenging route to take in an artificial system,

it has the advantage of allowing the system to specifically acquire the language knowledge

needed for the tasks and environment where it is deployed.

The second line of research is the use of embodiment and motor primitives for recognition.

The hypothesis here is that we recognize a gesture by simulating the same motion and

comparing with gestures that we already know how to produce. This is motivated by the

discovery of mirror neurons that fire both when performing a gesture and when observing

the same gesture performed by another. The existence of mirror neurons was first found

during grasping experiments [38], and there is also evidence that the motor area is involved

in speech recognition tasks [27]. This means that production and recognition are coupled

and that there is a link between what we can do ourselves and how we interpret what others

are doing. For speech this means that the auditory signal is first transformed into a speech

gesture, i.e. an articulation of the vocal tract, which may then facilitate both reproduction

and recognition of the speech sounds.

While there is strong evidence of the existence of both mirror neurons and of linguistic cues

in the speech signal directed to infants, it is not clear exactly how infants make use of these

when learning their language. By trying to formalize those ideas and implement them in a

humanoid robot we aim to create a tool that can be used both to increase the understanding of

infant language learning, and to find more flexible methods for language learning in humanoid

robots. We focus on humanoid robots both because of the challenges introduced from their

need to interact with humans in natural settings such as household environments, and because

of the opportunities to use embodiment and richer types of interactions due to their human-
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like body structure and rich set of sensors.

In summary, this thesis studies how the ecological perspective of infant language learning,

and the concept of ”mirror neurons”, can be implemented in a humanoid robot. By doing

this, it aims at two goals: (i) to find more flexible methods for language learning in humanoid

robots, and (ii) to increase the understanding about infant language learning. To delimit this

work, only early language learning, i.e. learning single words and speech units, is considered.

This corresponds loosely to infants’ language learning during their first year of life.

The remainder of this chapter gives an introduction to ecological language acquisition and

motor-based learning, and discusses how these theories can be applied to language learning

in humanoid robots. Based on this we then give an overview of the approach taken in this

thesis and discuss some of the main contributions of this thesis.

1.1 Ecological language acquisition

In this thesis we follow the ecological perspective by not assuming any innate linguistic or

phonetic knowledge. Instead we take advantage of the inherent structure available in the

speech signal. In order to mimic infants’ language acquisition it is important to follow a

similar developmental path, and to make sure that we create a similar ecological setting.

This section first gives an introduction to the developmental path of infants’ language

acquisition, from birth to around one year of age, when infants are able to produce and

recognize single words. We then take a more detailed look at the typical speech signal

directed to infants and how the structure of this signal may facilitate language learning. We

also look at how information coming from other sensor modalities can further be used to

guide the language learning.

1.1.1 Developmental path

At birth, infants are able to discriminate phonetic contrasts of all languages. Adults, on the

other hand, have very strong preference towards the sounds used in their native language.

This is sometimes described as a phonetic magnet that forces sound to be perceived as one

of the phonemes that are used in the particular language [70]. Infants start to show signs

of such a phonetic magnet for the vowel sounds of their native language already at around

six months of age. The same happens for consonants at around 11 months of age. This

preference for speech sound utilized in the native language indicates that the infants have

been able to acquire language specific phoneme models. It is not known how infants do that or

to which extent those phoneme models are already innate. However, whether the acquisition
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is done from scratch or by simply tuning a set of innate phoneme models, learning is still

necessary. One of the hypotheses in this work is that imitation games, where the infant and

the caregiver take turn in imitating each other, may have an important role in the phoneme

acquisition. However, to engage in such interaction games, infants need to be able to produce

sounds. Interestingly, infants seem to begin producing these sounds shortly before they show

a preference for perceiving these same sounds. The first vowel sounds are typically produced

between the second and the third month after birth, and canonical babbling that include

consonant begins around month seven.

Figure 1.1: Developmental path of an infant’s language capabilities. At birth infants can
discriminate phonetic contrasts of all languages, but later develops a preference towards the
sounds used in their native language. This happens approximately at the same time as they
learn to produce those sounds.

At around 6-8 months infants begin to show signs of being able to segment words from

fluent speech. This is a difficult task since words are generally not separated by silence, even

if it may appear so for an adult listening to its own native language. However, looking at

the speech signal it quickly becomes clear that this is not the case, Figure 1.2. Instead the

speech signal contains several other cues, based on either prosodic or statistical features, that
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may allow infants to do this initial segmentation. At this age infants are still not able to

reproduce the words, but they are able to associate the words with visual objects in their

surrounding at around 8 months of age. The first words are usually produced around 12

months.

Figure 1.2: Speech signal for the utterance ”Se p̊a den lilla Dappan”. As seen in the inten-
sity curve (green pane) and waveform (blue pane), there are generally no periods of silence
between the words.

1.1.2 Infant directed speech

An important part of the physical signal in the ambient language of almost every infant

is in the form of Infant Directed Speech (IDS), a typical speech style used by adults when

communicating with infants. IDS is found in most languages [6] [70] [29] and is characterized

by long pauses, repetitions, high fundamental frequency, exaggerated fundamental frequency

contours [30] and hyperarticulated vowels [70]. These phonetic modifications seem to be an

intuitive strategy, used automatically by the adults, that is both attractive and functional

for the infant [114]. A very similar speech style is found in speech directed to pets [49] [15],

and to some degree also in speech directed to humanoid robots [35], and pet robots [9].

The typical speech style and structure of IDS contains several important cues that can

facilitate the language acquisition. To make the discussion of those more clear, a separation

is done between cues related to the prosody and to statistical features.
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Prosodic cues

The prosody is related to the rhythm, stress, and intonation of speech. Acoustically it

involves variation in syllable length, intensity, pitch, and the formant frequencies of speech

sounds. These are variations of relatively low frequencies compared to the speech signal itself

and can therefore be perceived by the infant already inside the mother’s belly, which acts as

a low-pass filter for the surrounding sound.

It has been found that newborn infants are capable of separating between its native lan-

guage and languages from other language groups, while they do not seem to separate between

languages that have similar prosody [85]. It is therefore likely that some familiarization of

the prosody take place even before birth, and that this familiarization helps the infant to

focus on speech sound in general, and speech sound from the native language in particular.

This ability to quickly learn and to recognize prosodic patterns may also serve as a basis

for learning more complex acoustic patterns. The prosody has been found to be used by

infants for word segmentation [65] [84].

In this thesis, prosodic features are used mainly for two tasks, (i) to find target words in

fluent speech, and (ii) to detect when a caregiver is imitating the infant.

The first task is relatively well studied. Fernald and Mazzie [32] found that target words

in infant directed speech were typically highlighted using focal stress and utterance-final

position. In their study 18 mothers of 14-month-old infants were asked to tell a story from a

picture book called Kelly’s New Clothes, both to their infants and to an adult listener. Each

page of the book introduced a new piece of clothes that was designated as a target word.

When telling the story to the infants, target words were stressed in 76% of the instances,

and placed in utterance-final position in 75% of the instances. For adult speech the same

values were 40% and 53% respectively. Albin [2] found that an even larger portion of the

target words (87% - 100% depending of subject) occurred in final position when the subjects

were asked to present a number of items to an infant. There are indications that infants take

advantage of these features and therefore have easier to learn target words with focal stress

and utterance final position [44].

The second task has received much less attention from researchers. A study of this has

therefore been performed as a part of this thesis together with researchers from the University

of Stockholm [55]. This study showed that prosodic features can give important cues to when

the caregiver is imitating the infant. While no studies have been performed to verify that

infants actually make use of these features, a second study at the University of Stockholm

showed that altering the prosody can indeed change adults perception of an utterance as

being an imitation or not.
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Statistical cues and recurring patterns

The speech signal in general, and IDS in particular, contains lots of repetitions: phonemes are

reused and combined to form different words, and the words are then combined to construct

different sentences. However, not all combinations are used, and those that are used occur

with different frequencies. It has been suggested that 8 months old infants make use of this

statistical properties when segmenting words [103]. In that work 24 8-months-old infants each

listened to 2 min of continuous speech consisting of a number of three-syllable nonsense word,

such as ”bidaku”, ”padoti”, and ”golabu”, repeated in random order. The speech stream

was constructed so that the transitional probabilities between syllable pairs within words

(e.g. bida, daku) were 1.0, while the probabilities for the syllable pairs between words (e.g.

kupa, tigo) were only 0.33. After the exposure, the infants showed a significant difference in

listening time for sentences containing the target words, and sentences not containing any of

the target words.

The main problem with this approach is that in order to learn the sequential probabilities

for the syllable transitions, infants must also have been able to acquire models for the individ-

ual syllables. As stated earlier, infants at this age only show signs of grouping vowel sounds

into language specific speech units, but not yet consonants. Also, in a later experiment [104],

8-months-old infants show the same tendency to learn statistical transition probabilities for

tone sequences.

This leads to believe that there are some alternative explanations as to how infants are

able to segment words based on the repetitive nature of the signal. One such explanation

could be the use of pattern matching techniques, where the infants look for recurring patterns

in the speech signal [73].

While pattern matching can explain how infants are able to segment words without the

need for an underlying phoneme model, a statistical model based on phonemes is much more

powerful when it comes to separating between words in a large vocabulary of speech. It is

therefore likely that such statistical models become effective and necessary as the vocabulary

grows and the underlying phoneme model is in place.

1.1.3 Multimodal information

Infant’s first words usually refer to persons and objects in the surrounding. To be able to

ground those first words infants can make use of multimodal information and especially the

combination of audio and vision.

Whereas communication between adults is usually about exchanging information, speech

directed to infants is of a more referential nature. The adult refers to objects, people and
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events in the world surrounding the infant [72]. When for example playing with a toy, the

name of the toy is therefore likely to be mentioned several times within a relatively short time

as the infant is being introduced to the toy. As discussed, finding such recurring patterns in

the sound stream coming from the caregiver can help the infant to extract potential word

candidates. These can then be linked to the visual representation of the object.

Infants are very sensitive to such co-occurring events, and a study with 8-months-old

infants shows that they are able both to learn names of object and to ground those with

visual objects [44]. In this study, two puppets are shown for the infant, one at each time,

while a female voice read a number of sentences containing the name of each puppet. After

being presented to each of the puppets individually, they are both shown at the same time

on the screen while the female voice asks questions about one of the puppets. An eye-tracker

measures the time that infant look at each of the puppets and a significant longer looking

time was found for the puppet they were talking about.

1.2 Motor-based learning

By studying infant language learning, we get a good overview of the information available

to the language learning infant, as well as what part of the signal that is used at each step

of the developmental path. This is important information in order to take full advantage

of both the information available in the speech signal and to make use of other modalities

such as vision. However, these studies do not provide any insights to how the information is

processed in the brain, which may be equally important in order to mimic these capabilities

in a humanoid robot.

The signal creates sensorial stimulus that may either be used directly to interpret the

meaning, or first be transformed in some way in order to facilitate the interpretation. One

hypothesis, which is investigated in this thesis, is that the sensorial stimuli is first associated

with the articulation that was used to create the original signal, and that this articulation is

useful in order to interpret the meaning of the signal.

This was first suggested by the Motor Theory of speech perception [76]. In the original

work, it was assumed that this transformation was hard-wired in the brain and thus consid-

ered to be innate. However, it has later been argued that this transformation may be learned

rather than innate [37]. The latter is motivated by the discovery of ”mirror neurons”, which

is a group of neurons that fire both when a when a specific gesture is executed, and when

observing someone that is executing the same gesture.

Mirror neurons were discovered by a group of neurophysiologists when studying grasping

movements in the macaque monkey [38]. They found that some of the neurons that were
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measured consistently fired both when the monkey picked up a piece of food and when

a person performed the same movement. There are some indications that similar mirror

neurons exists also for speech. A more recent work in neuroscience demonstrated an increased

activity in the tongue muscles when listening to words that require large tongue movements

[27].

This type of embodiment, where the sensorial signal is associated with an articulation,

has already been found useful for learning to execute and recognize different types of grasps

with a humanoid robot [80]. From this work we have identified three developmental steps

that allow the robot to take advantage of motor-based learning: (i) creating a sensory-motor

map by babbling, (ii) gaining source invariance, and (iii) learning new gestures by imitation,

see Figure 1.3.

Figure 1.3: Developmental steps for motor-based learning

The first step aims at allowing the robot to associate sensory stimuli with the motoric

gesture that produced it. This can be done by a sensory-motor-map that the robot learns

through motor babbling. Babbling is a behavior that can be found also in infants, both for

learning to control arm movements and when learning to produce speech sounds.

While babbling allows the robot to map the sensory stimuli caused by its own actions to

the motor positions used to create them, the same action performed by another may create

different sensory stimuli and cause the initial map to fail. The initial map must therefore

be extended to compensate for the differences in sensor information depending whether the

action is performed by the robot or by another person.

Once the map has been learnt, it can be used in order to imitate the caregiver. This

capability has been found to be important, not only in order to learn new gestures, but also

in a later stage in order to recognize the gestures that are being performed.

Here we will take a closer look at each of the three steps and identify similarities and

differences between hand gestures and speech gestures, as summarized in Figure 1.4.
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Figure 1.4: Similarities and differences between motor-based learning of hand gestures and
speech for each of the developmental steps: babbling (left), gaining source invariance (center),
and imitation (right). Apart from the obvious difference between the sensors and actuators
used when learning hand gestures and speech, gaining source invariance is more difficult for
speech learning due to large interspeaker differences of the vocal tract.
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1.2.1 Babbling

The first step towards being able to imitate another person, whether the imitation is used in

order to recognize what the person is doing or in order to learn how to produce a new gesture,

it is first necessary to learn how to control the own production system. This is done through

babbling, an exploration process that allows the child to explore different motor actuations

and the corresponding consequences in the sensory system.

The most obvious difference between learning to produce speech sounds and learning to

perform arm movements, are the ”sensors” and the ”actuators”. For speech babbling the

actuators are the muscles that control the shape of the vocal tract and the ears are our

sensors, while for arm movements it is the muscles in the arm that serve as actuators and

the eyes are the sensors that provide feedback. As motor-based learning is an embodied

approach, where the actual shape of the body is seen as an important part of the cognitive

system, it is necessary to have models that provide similar physiological capacities as humans.

During babbling, different actuator positions are experimented and the resulting sensor

input is used to train the sensory-motor map. Both in the case of arm movements and speech

babbling, the learning is complicated by the fact that several actuator positions can lead to

the same or nearly the same sensor result.

The use of speech babbling in infant language learning is described in [75]. While babbling

was first seen as an isolated process, it has later been shown to have a continuous importance

for the vocal development [123]. It has also been shown that in order to babble normally,

children need to be able not only to hear both to themselves and other conspecifics [111], but

also to establish visual contact with others [88].

1.2.2 Gaining source invariance

Having a good sensory-motor map for our own actions may not be sufficient to map the

actions of others and find the necessary motor positions to reproduce the action. In the case

of arm movements there is a significant difference in the visual stimuli caused by the different

viewpoints when watching yourself execute an action compared to watching someone in front

of you executing the same action. This can be solved with a view-point transformation

(VPT). The VPT can be seen as an additional map that allows the observer to do a ”mental

rotation” that places the demonstrator’s arm in correspondence with the observer’s own body.

This map can either be learned or pre-programmed.

For spoken language the problem is slightly different. Even though the position of the

speaker does affect the sound slightly, it is of little or no significance for how the speech

sounds are perceived. A map corresponding to the VPT of the visual input is therefore not
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needed for the audio input. On the other hand, there are considerable differences in the vocal

tract between different speakers. These differences are often enough to cause the map to fail,

especially in the case of adult-infant or human-robot where there are significant differences

between the voice used during babbling and the voice of the caregiver. While vocal tract

normalization (VTN) [97] can be used to compensate for some differences in length of the

vocal tract, speaker variation is still a largely unsolved problem.

An alternative method to obtain generalization is to train the initial sensory-motor map

with the voice from several speakers. This can be done in an ecological way by using inter-

actions. Even the initial babbling may actually be more than just a self-exploration task; it

may also be the first step towards interaction. When a caregiver is present, he or she is likely

to imitate the sound of the infant, giving the infant the possibility to create a map between

its own utterances and that of the caregiver. In the previously referred imitation study at

Stockholm University [55], it was shown that in about 20% of the cases, the response from

the caregiver was seen as an imitation of the infant’s utterance when judged by other adult

listeners. It was also shown that it is possible to get a good estimation of when there is an

imitation or not by comparing a number of prosodic features.

By producing speech sound and detecting possible imitations, it can therefore be possible

overcome the differences between the own voice and that of the caregiver. By repeating this

kind of ”imitation game” with several different caregivers it is possible for a robot to learn

how to map sounds from different speakers to its own motor positions in order to reproduce

or recognize those sounds, and thereby overcoming the problem with inter-speaker variations.

1.2.3 Learning by imitation

When the robot has learnt how to map an observed gestures produced by a human to its

own motor primitives, it can use this to both facilitate the recognition of the gesture or and

to learn new gestures.

If the sensory-motor map is able to fully reconstruct the motor positions used to reproduce

the action, this step should be relatively straight forward. However, due to the complexity of

this mapping, the sensory-motor map may not give a perfect result. In order to compensate

for these shortcomings, the caregiver may try to alter the demonstration. For language

learning this means that the caregiver actively changes his or her voice or overarticulates in

order to help the infant to correctly pronounce the utterance. This behavior has been studied

in [22]. By providing the infant with feedback on how well it is articulating, the infant can

locate articulatory target positions that are useful for communication.
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1.3 Approach of this work

This thesis takes an ecological approach to language acquisition and applies it to humanoid

robots. More specifically, preprogrammed linguistic knowledge such as phone models are

avoided and are instead learned through the interaction with a caregiver and by using motor

learning. In contrast to the common data-driven approach to language learning, this approach

takes advantage of a wider spectrum of features coming from several different modalities.

Another important part is the use of embodiment. The humanoid robot used in the

experiments has physical models of human head and outer ears, Figure 1.5, and simulated

models of the inner ear and the vocal tract. Creating models that closely match human

audition and speech production is important when trying to mimic the human language

learning capacity, especially when motor learning is used. The robot is also equipped with

eyes in form of cameras, and has motors that can move the eyes and the head.

Figure 1.5: Chica and Chico - the humanoid robots used for the experiments in this thesis.

The different steps in the proposed developmental approach to early language learning

in humanoid robots are outlined in Figure 1.6. The approach consists of two parallel paths

where the robot independently learns an initial word model and initial speech units. These

are then combined in a statistical model. We have also included a step for sound localization.

Being able to localize speech sounds can facilitate the learning by allowing the robot to turn
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towards the speaker and establish visual contact. Having visual contact with the caregiver

is important for an infant’s babbling and we will show that it can be useful also for robots

in order to learn the sensory-motor map.

The sensory-motor map is learnt in the lower of the two parallel paths. This path follows

the steps described above for learning through imitations. It is closely related both to how

infants learn to produce speech sounds and how they learn to imitate different arm gestures.

The goal of this path is both to learn a speaker invariant sensory-motor map that can map

speech sounds produced by different speakers to the positions in the motor space of the robot,

and to learn initial speech units. The initial speech units correspond to target positions in

motor space that are used to create different speech sounds such as vowels.

The initial word learning takes advantage of some of the characteristics of infant directed

speech (IDS) in order to extract sound patterns that are consistently used to describe different

objects. Several characteristics are used. The most important is the fact that IDS contains

lots of repetitions and that utterances typically refer to objects in the surrounding. By

using pattern matching techniques such as dynamic time warp (DTW) we can find recurring

patterns in the speech signal which may potentially correspond to words. By comparing

which speech patterns that consistently co-occur with certain visual objects it is possible to

find words that are associated with those objects. We also make use of the fact that the

caregiver typically highlights target words by using focal stress and utterance final position.

In the final step, initial words and speech units are combined to create a statistical

model. A statistical model such as a hidden Markov model (HMM) provides a very compact

description of the words while at the same time taking into account statistical differences.

This becomes a necessary step when the vocabulary grows and direct pattern matching is

no longer sufficient to separate the words. The initial word learning is still important in

order to create a training set for the statistical learning. Also, by delaying the creation

of the statistical model until the sensory-motor map has been fully learnt, we can use this

map in order to include motor information in the statistical model. Finally the speech units

learnt through imitation can serve as a starting point for finding suitable speech units for the

statistical model.

1.4 Thesis contributions

This thesis presents a developmental approach to early language learning in humanoid robots.

More specifically it provides models and learning methods that allow the robot to acquire

speech units and single words. This is done by mimicking infant language learning during

their first year of life.
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Figure 1.6: Developmental learning approach

On a large scale, the objectives of the work has been to focus on the following goals: (i)

to investigate how much of linguistic structure that can be derived directly from the speech

signal directed to infants by (ii) designing, building and testing ecological computational

models for language acquisition in a humanoid robot, and (iii) to investigate similarities and

differences between language learning and other learning processes such as grasping.

By doing this, the thesis contributes with insights both on how to create more flexible

and human-like methods for language learning in humanoid robots, and to increase the

understanding on how infants are able to learn their language.

The main contribution of thesis is probably the developmental learning approach itself,

and the way that existing methods are combined in order to allow the robot to learn its

language from natural speech and social interactions, without the need for pre-programmed

linguistic knowledge such as phonemes. However, specific contributions have also been made

both for the embodied models of vocal tract and the ears, as well as for each of the steps in

Figure 1.6.

For the articulatory model an open source software, jArticulator [59], has been developed.

The software is written in Java and is fully scriptable from either built-in jython console or

through Matlab.

For sound localization, a new method for determining the elevation of the sound source

has been developed. The method makes use of the fact that reflections in the outer ear or the

”pinna” provides spectral cues that can be used for sound source localization. An artificial

pinna was developed that creates spectral notches comparable to those of the human ears. It

also makes use of the fact that there are small asymmetries between our ears. The method

includes algorithms for finding the spectral notches and learning to map those to the elevation

of the sound source.

For the initial word learning we extend existing methods for multimodal word learning
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by including features such as word positioning and prosody in order to find suitable target

words. This makes the method more robust in natural adult-infant interactions.

For babbling and imitations several contributions have been made, most importantly for

expanding the sensory-motor map to account for interspeaker differences. This is done by

making use of the fact that caregivers tend to imitate the infant, which allow the infant

to collect acoustic examples from several speakers when training the map. A method for

detecting when the caregiver is imitating the infant, based on prosodic features, is proposed.

Another contribution is the use of visual information in the sensory-motor map, which can

improve the recognition rate for the initial speech units.

Finally, the statistical word learning is a novel method in that it only makes use of the

information coming from natural interactions and optimizes the number of speech units based

on those interactions.

1.5 Structure of the thesis

The first part of this thesis describes the embodiment of the sensor and actuator models.

Chapter 2 describes the model of the articulatory system consisting of a tube model that

produces synthesized speech and an articulatory model that simulates movements of the jaw,

tongue, and lips. Chapter 3 describes the model of the auditory system, which consists of

a physical model of the outer ear and computational models for the transformation of the

signal in the inner ear. It also derives a number of acoustic features that are used for the

different learning methods throughout the thesis. Separate features are derived for sound-

source localization, the prosody, and the tonotopic representation.

Chapter 4 describes how the ear model can be used for sound-source localization and

making the robot turn towards the speaker, which is important to be able to interact with a

caregiver.

Chapter 5 and Chapter 6 are directly related to the motor-based learning described in this

introduction. The first describes the babbling and inversion mapping, i.e. the learning of the

initial sensory-motor map, and especially describe how to deal with the inversion problem

caused by different articulations producing the same or similar speech sounds. The latter

explain how to expand the map to include interspeaker variations, and use imitation for

learning an initial set of speech units. This chapter also describes how the robot can decide

if a given response from the caregiver should be considered as an imitation or not.

Chapter 7 is directly related to the ecological approach and describes how initial words

can be learned by looking for recurring patterns in the speech signal and grounding those

with objects in the visual field.
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Chapter 8 describes how linguistic structure such as speech units can emerge when the

initial vocabulary found in chapter 7 increases and direct pattern matching is no longer

sufficient to handle the growing vocabulary. It also shows how the initial speech units found

during the imitation experiment can help to bootstrap this.

The thesis ends with general discussion and conclusions in Chapter 9, together with some

directions for future work.
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Chapter 2

Modeling the articulatory system

In order to develop a computer-based system that can acquire language capabilities similar

to that of an infant, we must first make sure that the system can produce and perceive

speech sounds. In this chapter we will concentrate on how to produce speech sounds and

leave audition to the next chapter.

There are several possible methods to develop computer models for speech production.

The most straight-forward is to simply record human speech sounds and then reproduce

those. In systems with a very limited vocabulary, such as toys, this is often done with

words or even complete phrases. Of course, this approach can only be used for very limited

speech repertoires and cannot generalize in a simple manner. One way to create more general

systems is to concatenate smaller speech units, such as phonemes or diphones that can be

reused among combined into many. However, it is difficult to do this concatenation without

getting a discontinuity at the boundary. Still these systems are able to produce high quality

speech.

An alternative approach is to not use recorded speech at all and instead generate the

speech sounds in a completely synthetic way. One way to do this is to use formant synthe-

sis. The formants are spectral peaks of the sound spectrum and by placing those peaks at

different frequencies, different speech sounds are generated. Formant synthesis doesn’t have

the problem with discontinuities, but typically creates less natural and more robotic sounds.

While both of those methods are able to produce speech sounds, none of those really

models how humans produce speech. Here we are interested in studying the coupling between

production and perception, through the use of motor primitives during recognition. We

therefore need models of the vocal organs that humans use to produce speech. Several models

already exists and while the resulting speech sounds are still inferior to that produced with

the methods above, they are still more interesting for our purpose. There have been several

attempts to build mechanical models of the vocal tract [47] [36]. While these can produce

19
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some human like sounds they are still rather limited and there are no commercially available

mechanical solutions.

In this thesis we have instead chosen to simulate the vocal organs in software. One

software for this purpose is VTcalcs [83]. This has been used for studying syllable production

[43] and vocal imitations [66]. One limitation with this model is that the source code is

not available so its internals can mainly be viewed as a ”black box”. This also makes it

very difficult to extend or adapt the existing model. Here we have therefore chosen not to

rely on third-party software, and instead develop our own open source articulatory speech

synthesizer called jArticulator [59]. The jArcticulator offers similar functionality as VTcalcs.

A number of parameters make it possible to control the position of the jaw, tongue and

lips, and a synthesizer produces the speech signal by simulating the air flow based on these

parameters. By being open source it makes it possible to try different parameters and control

strategies. There are a few open source initiatives with similar ideas, such as gnuspeech [48]

and ArtiSynth [125]. The first provides a ready to use system, which is based on articulatory

speech synthesis, but does not include a parametric model of jaw, tongue, and lips. ArtiSynth,

on the other hand, does provide a model of the jaw and the tongue, as well as a separate

speech synthesizer, but the different parts have not been integrated into a complete system

that can be used for studying the inversion mapping. There are also other related software

models that are not provided as open source [26] [11].

In this chapter we will have a closer look at the models on which jArticulator is built. We

start by giving a short introduction to human speech production. We then describe how the

speech synthesis is done using a tube model, and finally describe articulatory model that is

used on top of the tube model to simulate human articulations.

2.1 Human speech production

As we want our model to mimic the vocal organs, we will first have a brief look at how

humans produce speech sounds. The vocal organs, i.e. the parts of the body that are related

to speech production, consist of the lungs, the larynx (containing the vocal cords), the throat

or pharynx, the nose and the mouth.

The lungs produce a steady air stream. When we talk, this stream is rapidly turned on

and off as our vocal cords vibrate, producing a sequence of short air puffs. The frequency

with which the vocal cords vibrate is called the fundamental frequency or the ”pitch” of the

speech signal. The pitch varies greatly between different people and also for each individual

as we alter the tension and the length of the vocal cords and depending on the air pressure

from the lungs.
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The throat, nose and mouth, produce a tube that is called the vocal tract, Figure 2.1. The

character of the air stream, released at the vocal cords, is modified by the acoustic properties

of the vocal tract. The properties depend on the shape of the vocal tract. During speech,

we continuously alter the shape of the vocal tract by moving the tongue and lips, thereby

creating articulated speech.

Next we will look at how to model these vocal organs in the humanoid robot.

pharynx

teeth

lips

Figure 2.1: Vocal tract

2.2 Tube model

From a technical point of view, the vocal system may be divided into three parts; (i) the

speech source, (ii) an acoustic tube between the glottis and the lips, and (iii) the lip radiation.

2.2.1 Glottal source

Starting with the speech source, we need to model the generation of the ”air puffs” caused

by the vibration of the vocal cords. It is important to notice that this is not a pure sinusoidal

vibration, as the resulting sine wave would not contain any harmonics, i.e. the frequency

spectra has only a single peak at that the fundamental frequency. If we would use a sine

wave as the speech source the vocal tract would therefore not be able to produce resonances
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at any other frequencies. Instead of a sinusoidal vibration there is a quite rapid movement

once the pressure has built up sufficiently to open the vocal cords. A simple, but functional,

way to model this is to use a pulse wave which frequency is set to the desired pitch.

There are also models that more closely fit the glottal source function, such as the LF-

model [28].

Figure 2.2: A typical shape of glottal flow pulse (above) and its derivative (below) according
to the LF model. This model has four parameters: (1) time instant of maximum glottal flow
(tp), (2) time instant of onset of glottal closure and maximum change of glottal flow (te), (3)
the projection of the derivative of the return phase (ta), and (4) the negative peak value of
the derivative function (Ee).

The LF-model is a four-parameter model represented by the following equation:

E(t) =

{

E0e
αtsin( π

tp
t), for 0 ≤ t ≤ te

−Ee

ǫta
[e−ǫ(t−te) − e−ǫ(tc−te)], for te < t ≤ tc

(2.1)

where the three time points te, ta, tp, and the amplitude parameter Ee uniquely determine
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the pulse. The remaining parameters are the fundamental period tc, the positive peak value

E0, and the shape controlling parameters α, and ǫ. These can be calculated using a conti-

nuity constraint at te, and by imposing a requirement of area balance, i.e., zero net gain of

flow during a fundamental period. This gives us the following equations for calculating the

remaining parameters:

−Ee = −
Ee

ǫta
[1− e−ǫ(tc−te)] (2.2)

−Ee = E0e
αtesin(

π

tp
te) (2.3)

∫ tc

0

E(t)dt = 0 (2.4)

By assuming a small value for ta, the first equation allows us to directly estimate ǫ as:

ǫ =
1

ta
(2.5)

Finally we only need to find the value of α, as it directly allows us to calculate the value

of E0. An iteratively search is used to find the value of α. After each iteration the area

balance is used to evaluate value of α. If there is a net gain in flow we need to reduce the

value of α, and if there is a net loss we instead need to increase the value.

In jArticulator the glottal source can be modeled either with a pulse wave, or with the LF

model, see Figure 2.3. We have also added a white noise to produce unvoiced speech sound.

2.2.2 Vocal tract tube

Next we want to model how this wave pulse is modified by the tube formed by our vocal

tract. The wave propagation in a tube, whose walls are viewed to have an infinitely high

sound impedance, follows Webster’s horn equation [126]:

∂2v(x, t)

∂x2
+

1

A(x)

dA(x)

dx

∂v(x, t)

∂x
=

1

c2
∂2v(x, t)

∂t2
(2.6)

where v(x, t) is the sound particle velocity at distance x from the source at time t, c is the

speed of sound and A(x) is the area function.

Unfortunately it is not possible to solve the equation for an arbitrary A(x). However, if

we assume that A(x) is constant, the equation can be simplified as:

∂2v(x, t)

∂x2
=

1

c2
∂2v(x, t)

∂t2
(2.7)
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Figure 2.3: The glottal source model implemented in jArticulator
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By introducing the volume velocity u := vA, a general solution to the equation above

can be seen as a combination of two volume velocity waves traveling forward and backward

respectively [96]:

u(x, t) = uf

(

t−
x

c

)

− ub

(

t+
x

c

)

(2.8)

To relax the constraint of constant area, a tube with variable area function can be ap-

proximated by concatenating several tubes, where each tube is considered to have a constant

area [79]. The sudden change in cross-sectional areas at the tube junctions is equivalent to

changes in the acoustic impedances, so that part of the traveling wave is reflected according

to the reflection coefficient:

rk =
Ak−1 − Ak

Ak−1 + Ak

(2.9)

Each tube segment can be modeled as a time delay. A Simulink model of simple vocal

tract model, consisting of two tube segments are shown in Figure 2.4.

By changing the length and the area of each tube segment in the described model, it is

possible to produce most vowel sounds. A comparison between vowels produced by a human

and by the tube model, are shown in Figure 2.5. As can be seen in the figure, the first

formants are at approximately the same frequencies.

In order to model stop consonants a third narrow tube segment, with a small area, is

needed at the place where the flow of the vocal tract is stopped. However, instead of using

tube segments of variable length it is more convenient to use several short tubes where the

length is equal to the distance that sound travel during one sample. In jArticulator we

therefore set the length of each tube segment l to:

l =
c

Fs

(2.10)

where c is the speed of sound and Fs is the sampling frequency.

2.2.3 Lip radiation

Some extra attention is needed at the end of the last tube. While the most natural might

be to consider the free air as an infinite area, this would mean that rk becomes -1 and no

air will be leaving the tube. One solution to this is to choose an arbitrary area for the free

air and just make sure that it is larger than the last tube segment. A more detailed model

of the lip radiation can be constructed by using an additional high-pass filter for the output

signal and a corresponding low-pass filter for the reflected wave [20].



26 CHAPTER 2. MODELING THE ARTICULATORY SYSTEM

Figure 2.4: Simulink vocal tract model with two tube segments and a junction. The glottal
source is modeled with a pulse wave and lip radiation is simulated with a fixed reflection rate
(above). The detailed models are shown for a single tube segment (center) and the junction
between two segments (below).
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Figure 2.5: Sound spectra for vowels produced by a human (left) and the tube model (right).
The vowels used are [i], [a], and [u] (from top to bottom). The first two formant frequencies
are around 300 Hz and 1900 Hz for the vowel [i], 800 Hz and 1200 Hz for [a], and around 300
Hz and 1000 Hz for [u].
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2.3 Articulatory models

While the tube model allows the area for each tube segment to be set individually, this is

not the case for the human vocal tract. As humans move their jaw and tongue in order to

articulate, this has coupled effects on the area function of a large part of the vocal tract.

Describing the articulations in terms of movements of the tongue, jaw, and lips, instead of

a pure area function may therefore help to focus on the relevant vocal tract configuration

and avoid anatomically impossible area functions. Even more important, it allows us to get

a measurement for how close different articulations are in terms of motor positions.

One of the hypotheses of the CONTACT project, in which part of this thesis has been

developed, is that motor space is more invariant than the produced speech sound for many

articulations and therefore better for speech recognition tasks.

An advanced equipment for studying articulatory features called ”linguometer” was there-

fore developed by some of the partners in the CONTACT project [41]. The linguometer

combined data from a 3D electromagnetic articulograph and an ultrasound system. The

articulograph locates the 3D position and orientation of 12 small coils that are glued to the

head, soft palate, tongue and lips. The articulograph has high accuracy, but does not provide

a complete model of the articulators. The ultra sound system on the other hand provides

a good 2D view of the complete tongue profile. By combining data from those sensors, the

linguometer is able to produce a good measurement of the configuration of the vocal tract.

The linguometer setup is shown in Figure 2.6. However, the direct measurements from the

linguometer still describe the positions of certain points in the vocal tract rather than the

underlying actuators. By having several subjects articulating a given set of speech sounds,

an attempt was made to find the role that different tongue muscles have for the position of

the tongue surface. Initial results indicate that those motor features are at least as good as

auditory features for classification.

Unfortunately, no complete model of how different muscles affect the shape of the vocal

tract was available in time for this work. Instead we have based the articulatory model

in jArticulator on the parameters in VTcalcs. The tongue model in VTcalcs was obtained

from images of two women articulating French vowels [83]. It was found that three PC’s

was enough to reconstruct the tongue shape with sufficient precision to separate between

the vowels, and were included in the VTcalcs software. These components corresponds to:

i) front-back movement of the tongue, ii) bending the tongue around two points, and iii)

bending the tongue around a single point, see Figure 2.7. Similar principal components have

also been found in other studies [109]. However, in this latter work they also found that a

forth PC including three bending points can help to create /s/ and /l/ sounds. While it is
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Figure 2.6: The linguometer setup. Left: the tongue, viewed in real-time via an ultrasound
machine. Right: an articulograph, which recovers the 3D pose of sensors placed on the tongue
and face.

possible to add this and other parameters to the tongue model in jArticulator, the current

model only includes three parameters for the tongue, directly inspired by the parameters of

VTcalcs.

Figure 2.7: Tongue movement in VTcalcs corresponding to the three main PC’s as imple-
mented in VTcalcs, i.e. front-back movement, two point bending, and single point bending.
The dashed line shows the center line and the upper and lower lines show the respective
extreme position.

Apart from the tongue parameters, VTcalcs also includes one parameter for the yaw, one

for the extrusion of the lips, one for lip opening, and a parameter for changing the position

of the larynx. With the exception of the last parameter, those have all been implemented in

jArticulator. The complete set of parameters is summarized in Table 2.1.
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Figure 2.8: Simulation of vocal tract using jArticulator
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Table 2.1: Parameters of the vocal tract model

Parameter Name Explanation

1 Jaw Jaw opening
2 Tongue Tongue position front/back
3 Shape The amount of roundness
4 Apex The positon of the roundness’ apex
5 Lip height The openess of the lips
6 Lip protrusion The protrusion of the lips
7 Larynx Larynx position

2.4 Conclusions

This chapter shows how the vocal organs can be modeled and simulated in an artificial system.

While we have not created a physically embodied model, we try to simulate a physical model

as close as possible using software.

We have modeled how the vibration of the vocal cords produces a pressure wave, and how

this pressure wave is transformed as it passes the vocal tract. The vocal tract is modeled with

a number of concatenated tube segments where each tube is considered to have a constant

area and to be of a fixed length. This approximation makes it easy simulate how a sound

wave propagates through the tube. For demonstration purpose, a simple Simulink model has

been derived and implemented. It is shown that the model can produce human-like vowel

sounds.

On top of the tube model we have built an articulatory model with six parameters that

mimics the movement of the jaw, tongue, and lip, and how this changes the cross section area

of each tube segment. The parameters have been chosen so that they are compatible with

the VTCalcs software. The advantage with this model is that it is commonly used and that

it works very well for producing vowel sounds as well as stop consonants. One disadvantage

is that it may not perform very well for other types of speech sounds.
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Chapter 3

Modeling the auditory system

In the previous chapter we had a look at how human speech is produced and how to model

this in a computer based system. As mentioned, the sound signal is produced from a sequence

of air puffs released from the vocal cord and the resonances caused by the form of the vocal

tract. This causes a complex wave pattern that is transmitted through the air. In Figure

3.1 we have plotted how the sound level changes over time for a typical speech signal. From

this plot we directly see how the sound intensity changes over time. As we mentioned in the

introduction, the periods of near silence that occur in the sound signal do not correspond

directly to the borders between different words, but rather parts of words such as syllables.

In some parts of the signal it is also possible to directly identify recurring spikes caused by

the vibration of the vocal cords. This becomes clearer if we look at a shorter time interval.

In Figure 3.2 we have a closer look at the speech signal for the interval between 0.26-0.33

s, loosely corresponding to the vowel /i/ in ”titta”. Here the fundamental period of around

0.01 s, which is equal to a pitch of 100 Hz, is clearly visible. These parts of the sound signal,

i.e. sound intensity, syllable length and pitch, and how these changes over time is called the

prosody of speech. These are relatively slow alterations of the sound signal compared to the

alterations caused by the resonances in the vocal tract. The prosody is mainly related to

the rhythm, stress, and intonation of an utterance, while it is the resonances in the vocal

tract that provide information about the actual articulation. These resonances are difficult

to distinguish directly from plots in Figure 3.1 and 3.2, but become more visible when the

signal is decomposed into its frequency components. This is also what happens in the human

ear as different places of the inner ear reacts to different frequencies, creating a tonotopic

representation of the sound signal.

As we are interested in modeling the auditory system of humans we will first look at what

happens when the sound wave hits the human ear, and then at how we can model this in our

humanoid robot. We look at both how to simulate the physical properties of the ear, and

33
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Figure 3.1: Acoustic wave for the phrase ”Titta en bil”

Figure 3.2: Close-up on the acoustic wave for the vowel i
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how to derive a number of features that enhance those parts of the auditory signal that are

most useful for language learning.

3.1 The auditory system

The acoustic information is primarily processed by our auditory system, shown in Figure 3.3.

The sound waves are reflected by the pinna and funneled into the ear canal where they set

the ear drum into vibration. This vibration continues through the middle ear and inner ear

(the cochlea) where the basilar membrane detects the vibration and passes the information

to the brain through the auditory nerve.

Pinna

Figure 3.3: The auditory system

The shape of both the pinna and the cochlea has important implications for how we

perceive sounds. The reflection of the pinna provides information that is useful for localizing

the sound and the cochlea defines how sensitive we are to different frequencies.

While the human ear is a very complex organ we need to create simplified models that

are suitable for implementation in a computer model while maintaining some of the main

characteristics of the human ear.

3.2 Modeling the cochlea and basilar membrane

The cochlea is a spiral shaped bone structure with a total length of about 3.5 cm. The

cochlea contains the basilar membrane, the base for the sensory cells of hearing, the hair
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cells. There are approximately 12000 hair cells in each ear [23]. These play a crucial role in

the transfer of sound waves to the brain.

2000 Hz

3000 Hz

4000 Hz

8000 Hz

20000 Hz

high-frequency waves

medium-frequency waves

low-frequency waves

Figure 3.4: Basilar membrane

The cochlea works as a crude mechanical filter that separates the incoming sound into

its frequency components, with maximum vibration at the base for high frequencies up to 20

kHz, and maximum vibration for low frequencies around 20 Hz at the apex at the end of the

spiral. The cochlea is filled with a fluid with mechanical characteristics similar to water, and

the movement of this fluid causes the hair cells at the basilar membrane to move along. As

the hair cells are set into vibration, they signal this through the acoustic nerve to the brain.

The basilar membrane imposes limits on the hearable frequency range, but even for the

hearable part the basilar membranes response to input frequencies is non-linear: a larger

portion of the basilar membrane responds to sounds in the 0-1 kHz range than, for example,

in the 10-11 kHz range. As a consequence human listeners are more sensitive to differences in

the lower than in the higher frequencies. This sensitivity can be modeled with the mel-scale.

The mel scale is based on experiments with pure tones in which listeners adjust the frequency

of a test tone to be half as high (or twice as high) as that of a comparison tone, starting at

1000 Hz = 1000 mel. From there 500 mel is defined as the pitch of tone that sounds half as

high, and 2000 mel the pitch of tone that sounds twice as high as 1000 Hz.

The mel scale corresponds closely to the Hz scale up to approximately 500 Hz. At higher

frequencies, the mel scale is nearly logarithmic. Mels can be interpretable in terms of linear
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distance along the basilar membrane.

Figure 3.5: Mel scale

3.2.1 Tonotopic representation of speech signal

The purpose of the tonotopic representation is to model how the sound signal is divided

into different frequency components as it passes along the basilar membrane, and provide

a compact representation of this, which can then be used as a feature vector for the lan-

guage acquisition. Several tonotopic representations have been proposed to facilitate speech

recognition. For production and recognition of vowels, formants are commonly used [129].

Formants are spectral peaks in the sound spectrum caused by resonances in the vocal tract.

However, due to difficulties to track the formants for non-stationary signals, they are mostly

useful for vowels. In other related work, Linear Predictive Coding (LPC) has been used

[68] [89]. LPC is more generally applicable than formants, but still require rather stationary

signals to perform well. Here, Mel frequency cepstral coefficients (MFCC) [21] are used as

speech features since these are less dependent on having a stationary signal. The steps for

calculating MFCC are outlined in Table 3.1.

The first step is to calculate the frequency spectra using FFT. It is not possible to find

the frequency components by looking at the signal at a single instant. Instead it is necessary

to divide the signal into small segments, or windows, that are long enough to span the wave

lengths of the interesting frequencies, but short enough to capture variations of speech sounds.
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Figure 3.6: Calculation of mel log powers: 1. FFT power spectrum (top left), 2. Mel spaced
filter bank (top right), 3. Mel values (bottom left), 4. Mel log powers (bottom right)
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Table 3.1: Algorithm for calculating MFCC

1) Make a FFT of the speech signal
2) Map the powers of the spectrum obtained above onto the mel scale,
using triangular overlapping windows.
3) Take the logs of the powers at each of the mel frequencies.
4) Take the discrete cosine transform of the bank of mel log powers.
5) The MFCCs are the amplitudes of the resulting spectrum.

Typically this is done by using 25 ms windows with 50% overlap between the windows, which

is sufficient to capture at least two periods of the pitch (and all harmonics).

In the second step the frequency spectrum is mapped onto the mel scale. Instead of

making this for each individual frequency, a filter bank is used. This simulates how the

individual hair cells are affected not only by a single frequency, but by a wider band of

frequencies. Typically 24-32 filter banks are used.

Next we take the logs of the powers at each of the mel frequencies. These first steps are

illustrated in Figure 3.6.

The final step is to make a discrete cosine transform of the bank of mel log powers. The

components of the resulting spectrum are our MFCC, see Figure 3.7. Both the MFCCs and

their derivatives are used as features for speech recognition.
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Figure 3.7: MFCCs used as tonotoic representation of the speech signal
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3.2.2 Prosodic features

The prosodic features aim at capturing the rhythm, stress, and intonation of an utterance.

Some suggestions on prosodic features and tests of their usefulness can be found in [9] [8].

For this thesis, the following prosodic features have been adopted:

1. Number of syllables

2. Length of the last syllable

3. Length of the second last syllable

4. Difference in length between the two last syllables

5. Difference in pitch for the two last syllables

The start of a syllable is detected when the intensity exceeds a certain threshold value,

and the end of the same syllable is defined as the point when the intensity drops below a

second threshold, set slightly lower than the first.

The pitch, i.e. the fundamental frequency with which the vocal cords vibrate, was tracked

over each syllable using RAPT [115]. In order to calculate the difference in pitch between

syllables, only the pitch in the center of each syllable was used.

3.3 Modeling the head and pinna

The shape of the head and ear changes the sound as a function of the location of the sound

source. This phenomenon is called the head related transfer function (HRTF). This section

describes the design of a robotic head and ears that give a human-like HRTF, and especially

provides Interaural Time Difference (ITD), Interaural Level Difference (ILD), and frequency

notches similar to those observed in humans.

The ITD depends on distance between the ears and the ILD is primarily dependent on

the form of the head and to less extent also the form of the ears, while the peaks and

notches in the frequency response mainly are related to the form of the ears. For the sake

of calculating the HRTF, a human head can be modeled by a spheroid [4] [24]. The head

used in this work is the iCUB head which is close enough to a human head to expect the

same acoustic properties. The detailed design of the head is described in [10] but here we can

simply consider it a sphere with a diameter of 14 cm. The ears are more complex. Each of

the robot’s ears was built by a microphone placed on the surface of the head and a reflector

simulating the pinna/concha, as will be described in detail below. The shape of human ears
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Figure 3.8: Pinna and concha of a human ear (right) and the artificial pinna (left).

differs substantially between individuals, but a database with HRTF for different individuals

[5] provides some general information on the frequency spectra created for various positions

of the sound source by human ears. Obviously, one way to create ears for a humanoid

robot would be to simply copy the shape of a pair of human ears. That way we can assure

that they will have similar properties. However we want to find a shape that is easier to

model and produce while preserving the main acoustic characteristics of the human ear. The

most important property of the pinna/concha, for the purpose of locating the sound source,

is to give different frequency responses for different elevation angles. We will be looking

for notches in the frequency spectra, created by interferences between the incident waves,

reaching directly the microphone, and their reflections by the artificial pinna, and want the

notches to be produced at different frequencies for different elevations. A notch is created

when a quarter of the wavelength of the sound, λ, (plus any multiple of λ/2) is equal to the

distance, d, between the concha and the microphone:

n ∗
λ

2
+

λ

4
= d (n = 0, 1, 2, ...) (3.1)

For these wavelengths, the sound wave that reaches the microphone directly is cancelled

by the wave reflected by the concha. Hence the frequency spectra will have notches for the

corresponding frequencies:
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f =
c

λ
=

(2 ∗ n+ 1) ∗ c

4 ∗ d
(c = {speed of sound} ≈ 340m/s) (3.2)

To get the notches at different frequencies for all elevations we want an ear-shape that

has different distance between the microphone and the ear for all elevations. Lopez-Poveda

and Meddis suggest the use of a spiral shape to model human ears and simulate the HRTF

[81]. In a spiral the distance between the microphone, placed in the center of the spiral, and

the ear increases linearly with the angle. We can therefore expect the position of the notches

in the frequency response to also change linearly with the elevation of the sound source.

We used a spiral with the distance to the center varying from 2 cm below to 4 cm in the

top, Figure 3.8. That should give us the first notch at around 2800 Hz for sound coming

straight from the front and with the frequency increasing linearly as the elevation angle

increases. When the free field sound is white noise as in Figure 3.9, it is easy to find the

notches directly in the frequency spectra of either ear. However, sound like spoken language

will have its own maxima and minima in the frequency spectra depending on what is said.

It is not clear how humans separate what is said from where it is said [63]. One hypothesis is

that we perform a binaural comparison of the spectral patterns, as it has also been suggested

for owls [91]. Both humans and owls have small asymmetries between the left and right

ear that can give excellent cues to vertical localization in the higher frequencies. These

small asymmetries that provide different spectral behaviors between the ears should not be

confused with the relatively large asymmetries needed to give any substantial difference for

the ILD. Here we only need the difference in distance between the microphone and the ear

for the right and left ear to be enough to separate the spectral notches. In the ideal case we

would like the right ear to give a maximum for the same frequency that the left ear has a

notch and hence amplify that notch. This can be done by choosing the distance for the right

ear, dr, as:

dr(φ) = 2
mr + 1

2 ∗ nl + 1
∗ dl(φ) (3.3)

where mr=maxima number for right ear, nl=notch number for left ear, and dl=distance

between the microphone and ear for left ear.

If, for example, we want to detect the third notch of the left ear and require the right ear

to have its second maxima for that same frequency, we should choose the distance between

the microphone and ear for the right ear as:

dr(φ) = 2
2 + 1

2 ∗ 3 + 1
∗ dl(φ) =

6

7
∗ dl(φ) (3.4)

In the case of two identical ears we cannot have a maximum of the right ear at the same
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Figure 3.9: Example of the HRTF for a sound source at a) 50 degrees above, b) front, and
c) 50 degrees below
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place as the left ear has a notch for all elevations. The best we can do is to choose the angle

between the ears so that the right ear has a maximum for the wanted notch when the sound

comes from the front. In the specific case of the ears in Figure 3.8 the optimal angle becomes

18 degrees, which is the setup used in this work.

3.4 Conclusions

To mimic infants’ language learning using a humanoid robot, it is necessary that the signal

provided to the robot is similar to that of the infants. This chapter describes how the sound

signal is affected by the human ear and how we can model this in the humanoid robot. A

physical model of the outer ear is needed to create a human-like HRTF, while the frequency

response of the inner ear is modeled using a mel-scale transformation.

A number of features, that provide compact representations of the acoustic information,

are also proposed.

For the tonotopic representation we have chosen to use MFCC, as these are the most

common features for speech recognition.

Finally we have also suggested a number of prosodic features that provide important

additional information that is commonly used in infant-direct speech.



Chapter 4

Sound localization

Sound plays an important role in directing humans’ attention to events in their ecological

setting. The human ability to locate sound sources in potentially dangerous situations, like an

approaching car, or locating and paying attention to a speaker in social interaction settings,

is a very important component of human behavior. In designing a humanoid robot that

is expected to mimic human behavior, the implementation of a human-like sound location

capability as a source of integrated information is therefore an important goal. Humans are

able of locating the sound sources in both the horizontal and vertical plane from exploring

acoustic information conveyed by the auditory system, but in a robot that uses two simple

microphones as ears there is not enough information to do the same. Typically the robot

would be able to calculate or learn the positions of the sound source in the plane of the

microphones, i.e. the azimuth which usually corresponds to the horizontal plane. This can

be done by calculating the difference in time between the signal reaching the left and the right

microphone respectively. This is called the interaural time difference (ITD) or the interaural

phase difference (IPD) if we have a continuous sound signal and calculate the phase difference

of the signal from the two microphones by cross-correlation. However, the ITD/IPD does

not give any information about the elevation of the sound source. Furthermore it cannot tell

whether a sound comes from the front or the back of the head. In robotics this is usually

solved by adding more microphones. The SIG robot [94] [93] has four microphones even

though two are mainly used to filter the sound caused by the motors and the tracking is

mainly done in the horizontal plane. In [120] eight microphones are used, and in [112] [42] a

whole array of microphones is used to estimate the location of the sound.

While adding more microphones simplifies the task of sound localization, humans and

other animals manage to localize the sound with only two ears. This comes from the fact

that the form of our head and ears change the sound as a function of the location of the

sound source, a phenomenon known as the head related transfer function (HRTF). The

45
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HRTF describes how the free field sound is changed before it hits the eardrum, and is a

function H(f, θ, φ) of the frequency, f , the horizontal angle, θ, and the vertical angle, φ,

between the ears and sound source. The IPD is one important part of the HRTF. Another

important part is that the level of the sound is higher when the sound is directed straight into

the ear compared to sound coming from the sides or behind. Many animals, like cats, have

the possibility to turn their ears around in order to get a better estimate of the localization

of the sound source. Even without turning the ears, it is possible to estimate the location

of the sound by calculating the difference in level intensity between the two ears. This is

referred to as the interaural level difference (ILD). However, if the ears are positioned on

each side of the head as for humans, ILD will mainly give us information about on which

side of the head that the sound source is located, i.e. information about the azimuth which

we already have from the ITD/IPD. In order to get new information from the ILD we have

to create an asymmetry in the vertical plane rather than in the horizontal. This can be done

by putting the ears on top of the head and letting one ear be pointing up while the other is

pointing forwards as done in [6]. The problem with this approach is that a big asymmetry

is needed to get an acceptable precision and ILD of human-like ears does not give sufficient

information about the elevation of the sound source.

For humans it has been found that the main cue for estimating the elevation of the sound

source comes from resonances and cancellation (notches) of certain frequencies due to the

pinna and concha of the ear. This phenomenon has been quite well studied in humans both

in neuroscience and in the field of audio reproduction for creating 3D-stereo sound [3] [40]

[61] [107] [60] [7] [86], but has often been left out in robotics due to the complex nature of

the frequency response and the difficulty to extract the notches.

In this chapter we present an effective, yet relatively easy, way of extracting the notches

from the frequency response and we show how a robot can use information about ITD/IPD,

ILD, and notches in order to accurately estimate the location of the sound source in both

vertical and horizontal space. Knowing the form of the head and ears it is possible to calculate

the relationship between the features (ITD, ILD, and the frequencies for the notches) and

the position the sound source, or even estimate the complete HRTF. However, here we are

only interested in the relationship between the features and the position. Alternatively we

can get the relationship by measuring the value of the features for some known positions of

the sound source and let the robot learn the maps. Since the HRTF changes if there is some

changes to the ears or microphones or if some object like for example a hat is put close to the

ears, it is important to be able to update the maps. Indeed, although human ears undergo

big changes from birth to adulthood, humans are capable of adapting their auditory maps

to compensate for acoustic consequences of the anatomical changes. It has been shown that
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vision is an important cue for updating the maps [130], and it can also be used as a mean

for the robot to update its maps [90].

4.1 Features for sound localization

Three different features are used for localizing the sound source: ITD, ILD, and the notches

in the frequency response of each ear.

4.1.1 ITD

The ITD is calculated by doing a cross-correlation between the signals arriving to the left

and right ear/microphone. If the signals have the same shape we can expect to find a peak

in the cross-correlation for the number of samples that corresponds to the interaural time

difference, i.e. the difference in time at which the signal arrives at the microphones. We can

easily find this by searching for the maximum in the cross correlation function. Knowing the

sampling frequency Fs and the number of samples n that corresponds to the maximum in

the cross-correlation function we can calculate the interaural time difference as:

ITD =
n

Fs

(4.1)

If the distance to the sound source is big enough in comparison to the distance between

the ears, l, we can approximate the incoming wave front with a straight line and the difference

in distance ∆l traveled by the wave for the left and right ear can easily be calculated as:

∆l = l sin(Θ) (4.2)

where Θ is the horizontal angle between the heads mid sagittal plane and the sound source,

Figure 4.1. Knowing that the distance traveled is equal to the time multiplied with the

velocity of the sound we can now express the angle directly as a function of the ITD:

Θ = arcsin(ITD ∗
c

l
) (4.3)

However for the sake of controlling the robot we are not interested in the exact formula

since we want the robot to be able to learn the relationship between the ITD and the angle

rather than hard coding this into the robot. The important thing is that there exists a

relationship that we will be able to learn. We therefore measured the ITD for a number of

different angles in an anechoic room, Figure 4.2.
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Figure 4.1: Interaural time difference

Figure 4.2: ITD for different positions of the sound source.
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4.1.2 ILD

The interaural level difference ILD, is calculated as a function of the average power of the

sound signals reaching the left and right ear.

ILD = 10 ∗ log10

(∑

k s
2
l (k)

∑

k s
2
r(k)

)

(4.4)

Sometimes the ILD is calculated from the frequency response rather than directly from

the temporal signal. It is easy to go from the temporal signal to the frequency response by

applying a fast Fourier transform FFT. The reason for working with the frequency response

instead of the temporal signal is that it makes it easy to apply a high-pass, low-pass, or band-

filter on the signal before calculating its average power. Different frequencies have different

properties. Low frequencies typically pass more easily through the head and ears while higher

frequencies tend to be reflected and their intensity more reduced. One type of filtering that

is often used is dBA which corresponds to the type of filtering that goes on in human ears

and which mainly takes into account the frequencies between 1000 Hz and 5000 Hz. In [90]

a band-pass filter between 3-10 kHz have been used which gives them a better calculation of

ILD. Different types of head and ears may benefit from enhancing different frequencies. Here

we calculate the ILD directly from the temporal signal which is equivalent to considering

all frequencies. The response for a sound source placed at different angles from the head is

shown in Figure 4.3.
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Figure 4.3: ILD for different positions of the sound source.
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4.1.3 Spectral notches

Finding the spectral notches is a little more challenging. Existing methods for extracting

spectral notches such as [98] [99] [100] focus on finding the notches in spectral diagrams

obtained in anechoic chambers using white noise. For a humanoid robot that has to be able

to turn towards any type of sound these methods are not suitable.

In [52] we therefore developed a novel method to extract the frequency notches is suggested

that was reasonably fast and simple to implement, and gave better accuracy for calculating

the elevation of the sound source than methods based on ILD. The method makes use of the

fact that there is a slight asymmetry between the ears and has the following steps:

1. Calculate the power spectra density for each ear

2. Calculate the interaural spectral differences

3. Fit a polynomial to the resulting differences

4. Find minima for the fitted curve

To calculate the power spectra we use the Welch spectra [127]. Typical results for the

power spectra density, Hl(f) and Hr(f), for the left and right ear respectively are shown in

Figure 4.4. As seen, the notches disappear in the complex spectra of the sound, which makes

it very hard to extract them directly from the power spectra. To get rid of the maxima

and minima caused by the form of the free field sound, i.e. what is said, we calculate the

interaural spectra difference as:

∆H(f) = 10 ∗ log10Hl(f)− 10 ∗ log10Hr(f) = 10 ∗ log10

(

Hl(f)

Hr(f)

)

(4.5)

Finally we fit a polynomial to the interaural spectra difference. The best results seem

to be obtained with a 12-14 degree polynomial. In this work we have used a polynomial of

degree 12. As seen in Figure 4.4, the minimum more or less corresponds to the expected

frequencies of the notches for the left ear. This is because we carefully designed the ears so

that the notches from the two ears would not interfere with each other. In this case we could

actually calculate the relationship between the frequency of the notch and the position of the

sound source. However, in the general case it is better to let the robot learn the HRTF than

trying to calculate it since the positions of the notches are critically affected by small changes

in the shape of the pinna or the acoustic environment. Also, if we can learn the relationship

rather than calculating it we do not have to worry about the fact that the minima that we

find do not directly correspond to the theoretical notches as long as they change with the
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elevation of the sound source. In Figure 4.5 we show the value of the notch feature with the

sound source placed at a number of different positions in relation to the head.

Figure 4.4: Left: The power spectra for left ear (solid line) and right ear (dotted line). Note
that the spectra are shown in dB, i.e. 10 ∗ log(Hx(f)). The vertical lines represent the
expected frequencies for the notches. Right: The interaural spectral difference (dotted line)
and the fitted curve (solid line)

While the method described above works well in most situations and is fairly robust to

different types of sound, it still has a few shortcomings. First of all, the steps involved are not

very intuitive, and second, the method does not provide any measurement of the confidence

of the estimated notch position. The latter is very important in a robot that receives stimuli

from several different modalities and needs to evaluate how interesting, or salient, each of

them are [102].

To address those problems we have developed an alternative way to estimate the notches,

which is inspired by a method for computation of binocular stereo disparity with a single

static camera [121]. The trick here is to divide the signal using several overlapping windows,

with a single sample delay between each of them. For each window the frequency spectrum

is calculated using FFT, and we then calculate the sum of each frequency component over

all windows.

In Figure 4.6, we have used 300 windows, each with a length of 4000 samples (approx-

imately 0.1 s sound). Instead of looking for the notch, i.e. the minimum caused by the

reflecting wave, we have here chosen to look for the maximum situated between the notch at

8500 Hz and the notch at 14100 Hz in Figure 4.4. We estimate the maximum by calculat-

ing the first order moment over all frequency components between those notches, and then
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Figure 4.5: Notch frequencies for different positions of the sound source.

calculate the variance as the second order moment around this maximum. In Figure 4.6,

the place of the maxima and their variance is illustrated with a Gaussian for each elevation

angle.

It should be noticed that, in this new method, we have only used the signal from one

of the ears. The use of multiple overlapping windows seems to overcome the problem of

separating what is said from where it is said. Of course we can still subtract the signal from

the other ear in order to further improve the estimate, see Figure 4.7.

4.2 Sound localization

To test the sound localization algorithm, we acquired a dataset in an anechoic chamber with

a white-noise sound-source located 1.5m from the robot. We recorded 1 second of sound in

132 different head positions θ by moving the head with its own motors. A set of features was

evaluated from this data consisting of ITD and the notch frequency evaluated on 0.1 second.

This is used as the training dataset.

Using this training set we wanted to train a map m from the sound features C to its

localization written in head spherical coordinates SH , that can be used to direct the head

toward a sound source. This map can be represented by SH = m(C). A simple way to move
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Figure 4.6: Estimated maxima for different elevation angles using one ear.

Figure 4.7: Estimated maxima for different elevation angles using two ears.
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the head toward the target is to move the head pan and tilt by an increment ∆Θ equal to

the position of the sound source, i.e. Θ = SH . Although the function is not linear, if we

restrict to the space of motion of the head in can be considered as such, we can observe this

by noting that the features in Figure 4.2 and Figure 4.5 are almost planar. Because of this,

the nonlinear function can be approximated by a linear function:

SH = MC (4.6)

This simpler model allows a faster and more robust learning. To estimate the value of M

a linear regression with the standard error criteria was selected:

M̂ = argminM

∑

i=1

‖∆Θi −MCi‖ (4.7)

After training the map, a second dataset was created to test the learning method. The

procedure was similar to the previous one but the sound-source was replaced by a human

voice sound. This was done because the system should operate in a human-robot interaction

and also to evaluate the generalization properties of the method. Figure 4.8 presents the

reconstruction error by showing for each head position the corresponding error in reconstruc-

tion. We can see that the worst case corresponds to the joint limits of the head but it is

always less than 0.1 rad, which is very small. As a comparison we can note that 0.1 rad is

the size of a adult human face when seen from 1.5 m of distance. The error increase near

the limits is due to the nonlinearity of the features being approximated by a linear model,

however with this small error the computational efficiency and robustness makes us choose

this model.

Finally we want the robot to be able to compensate in the map for changes to the ears or

the environment. Therefore the map has to be updated online. For this a Broyden update

rule [33] was used. This rule is very robust and fast, with just one parameter and by only

keeping the actual estimative of M in memory. Its structure is as follows:

M̂(t+ 1) = M̂(t) + α
(∆Θ− M̂(t)C)CT

CTC
(4.8)

where α is the learning rate. This method is typically used with supervised learning, where the

positions corresponding to a certain sound are given. This is not the case for an autonomous

system. A robot needs an automatic feedback mechanism to learn the audio-motor relation

autonomously. Vision can provide information in a robust and non-intrusive way. Provided

that the sound source is a human caregiver, a face detection algorithm can be used to provide

the feedback, see Figure 4.9. Table 4.1 presents the algorithm for updating the audio-motor
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Figure 4.8: Audio-motor map reconstruction error for each head position (Unit: Radians)

map during interaction with a human.

Figure 4.9: Result of the face detection algorithm used as a feedback signal for the sound
localization algorithm.

A second experiment was performed using direct interaction with the robot in our offices.

After hearing a sound the head moves to the corresponding position. The previously learned
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Table 4.1: Algorithm for autonomously learning an audio-motor map by interaction with a
human

1) listen to sound
2) move head toward the sound using the map
3) locate human face in the image
4) if face not close enough to the center
a) do a visual servoing loop to center the face
b) update the map

function was used as a bootstrap. The map quality would always guarantee that the sound

source was located in the camera images, even though it was not trained neither in the same

environment nor considering the eye-neck coordinate transformation. In order to further

improve the map, we followed the steps of the algorithm presented in Table 4.1. Figure 4.10

presents the evolution of the error during the experiment. The error represents the difference,

in radians, from the position mapped by the model and the real localization of the person.

We can see that this error decreased towards less than one degree.

Figure 4.10: Convergence rate of the audio-motor map learning algorithm when running
online with feedback given by a face detector.
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4.3 Conclusions

For sound localization, ITD, ILD, and spectral notches are the most important features. A

novel method for finding the notches is proposed, and it is shown that the robot is able to

learn how to map these features to the location of the sound source, either by supervised

learning or by using vision. The suggested method has good accuracy within the possible

movements of the head used in the experiments. The error in the estimated azimuth and

elevation is less than 0.1 radians for all angles, and less than 0.02 radians for the center

position.
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Chapter 5

Babbling and inversion mapping

In the previous chapters we have developed models of the human articulatory and auditory

system, and demonstrated how the auditory models can be used for sound localization. Being

able to produce and perceive speech sounds, as well as being able to turn towards a sound

source are capabilities that can be seen as innate in infants, and should therefore be present

also in an artificial system that aims at mimicking infant’s language learning.

In the following chapters we will focus on how these models can be used to acquire

language capabilities. We will follow the developmental path that was outlined in the in-

troduction, and is shown in Figure 5.1. This consists of two parallel paths where the robot

learns an initial word model in the upper path and initial speech units in the lower. These

are learnt independently and are then combined in the final statistical model.

Figure 5.1: Developmental learning approach

Here we will first follow the lower path where the robot learns a set of initial speech

units. This path uses motor-based learning and is closely related both to how infants learn

to produce sounds and how they learn to imitate different arm gestures. In this chapter we

59
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will look at how babbling can be used to learn the sensory-motor map, which is the first

step towards being able to control the articulatory system and later on to be able to imitate

speech sounds from other robots or humans.

5.1 Acoustic-articulatory inversion mapping

The acoustic-articulatory inversion mapping aims at finding the articulatory positions that

can be used to produce a given speech sound. The articulatory positions are represented by

the six parameters of jArticulator, and the speech sound is represented by 12 mel frequency

cepstral coefficients (MFCC). Here we only look at the static map, and therefore only the

actual values of the MFCC are used and not their derivatives. Hence, in the case of inversion

mapping, we want to map the 12 MFCC back to the 6 articulatory positions used to create

the sound.

This mapping is a well-studied, but difficult problem, since several articulatory positions

can be used to produce the same or similar speech sounds. This many-to-one relationship

has been demonstrated in several different studies where the subjects have had their articu-

latory space restricted using a bite plate. Despite this restriction, subjects have been able to

pronounce both vowels and consonants correctly. It has also been shown that they do this

mapping directly without the need to listen to the actual output.

One common solution to the inversion problem is to use a codebook that stores the result-

ing sound for different articulatory positions. If the articulatory space is densely sampled,

this method can give accurate results. On the downside it requires lots of resources, both

in terms of memory in order to store the codebook, and in processing power to search the

codebook.

A more efficient approach in terms of memory and processing power, is to use an artificial

neural network (ANN). Conventional neural networks can be used to represent any kind of

function in order to map the input variables, i.e. the acoustic representation, to a set of output

variable, i.e. the articulatory parameters. The usual approach to train the network involves

minimizing the sum-of-squares error over a set of training data, by using back-propagation

to update the network weights. Unfortunately, when there can be multiple target values for

the same input, these networks will provide the average of the target values which is not

necessarily a correct value. A better result would be if, for every input, the network would

give us the conditional probability distribution of the target data. This can be achieved by

using a Mixture Density Network (MDN) [12].
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5.1.1 Mixture Density Networks

An MDN is a combination of an ANN and a mixture model that can represent arbitrary

conditional probability distributions, as shown in Figure 5.2. In this case x represents the

MFCC, and t is the target vector, i.e. the articulatory positions. Hence, we want the network

output z to represent the conditional probability density

Figure 5.2: Mixture Density Network with three Gaussian mixture components

p(t|x) =
m
∑

i=1

αi(x)φ(t|x) (5.1)

where m is the number of mixture components, αi(x) are the mixing coefficients or prior

probabilities that the target vector t having been generated from the ith component of the

mixture, and φi(t|x) are the conditional density. Typically the density is represented with a

Gaussian:

φ(t|x) =
1

(2π)c/2σi(x)c
exp

{

−
‖t− µi(x)‖

2

2σi(x)2

}

(5.2)

where the vector µi(x) represent the centre of the ith mixture component, σi(x) is the
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variance, and c is the dimension of the target vector.

For the network part, a standard multilayer perceptron (MLP) feed-forward network is

used. Here a single hidden layer 20 neurons is used. For the hidden layer sigmoidal activation

is used, and for the output layer a linear function is used. The number of output neurons

depend on the number of mixture components, M . In total (c + 2) ∗M output neurons are

used. For each component that allows for c neurons that represents the center of the kernel,

1 neuron for the prior, and 1 neuron for modeling a spherical covariance.

To make sure that the network output z provides a valid probability density some addi-

tional constraints are needed. In order to constrain the mixing coefficients to lie within the

range 0 ≤ αi(x) ≤ 1 and to sum to unity, the softmax function [14] is used to relate the

output of the corresponding units in the neural network to the mixing coefficients.

αi =
exp(zαi )

∑M
j=1 exp(z

α
j )

(5.3)

where zαi is the output of the neural network corresponding to the mixture coefficient for

the ith mixture component. The variances σi represent scale parameters. To avoid that the

variance become less than or equal to zero it is convenient to represent them in terms of the

exponentials of the corresponding network outputs

σi = exp(zσi ) (5.4)

where zαi is the output of the neural network corresponding to the variance for the ith mixture

component. Finally the means are represented directly by the corresponding outputs of the

ANN:

µij = zµij (5.5)

The training of the network part of the MDN, i.e. the weights of the ANN, can be done

using a standard back-propagation algorithm. To do this we need a suitable expression of

the error at the network output.

We want the network output to correspond to the complete conditional probability density

of the output variables. Hence we want to maximize the likelihood that the model gave rise

to the particular set of data points. In practice this is done by minimizing the negative log

likelihood of the observed target data points

E = −
∑

n

ln

{

M
∑

i=1

αi(x
n)φi(t

n|xn)

}

(5.6)
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given the mixture model parameters. The derivatives, δqk = ∂Eq/∂zk for a particular pattern

can then be used as the errors which can be back-propagated through the network in order to

update the weights. By introducing the following term for the posterior probabilities, which

is obtained using Bayes theorem

πi(x, t) =
αiφi

∑m
j=1 αjφj

(5.7)

the error values for the network outputs corresponding to αi, µik, and σi respectively, can be

expressed as [12]:

Eα = αi − πi (5.8)

Eµ = π

{

(µik − tk
σ2
i

}

(5.9)

Eσ = −π

{

‖t− µi‖

σ2
i

− c

}

(5.10)

After training, for each observation x, the MDN will provide us with m possible target

vectors and the a priori probability that each of them have been used to create the observed

vector.

5.2 Babbling

As mentioned, the acoustic-articulatory inversion map must be trained in order to set the

weights of the MDN. Just as an infant, the robot does this through babbling. During babbling

the robot produces a speech sample using a given articulatory position and then uses this

sample together with the known articulatory position to update the map. The complete path

for generating a speech sample and mapping it back to the articulatory positions is illustrated

in Figure 5.3.

In practice, this is not done one speech sample at a time. Instead a large number of

speech samples are created and the articulatory positions together with the resulting MFCC

are stored in a training set. This training set is then used to train MDN using batch training.

After training, the resulting map is evaluated using a separate evaluation set.
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Figure 5.3: Babbling
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5.2.1 Creating a training set

A simple way to create the training set is to randomly sample the complete articulatory

space and synthesize speech from those positions through the articulatory model. While the

articulatory model greatly reduces the search space and removes many unrealistic configu-

rations of the underlying tube model, the resulting training set may still contain too much

redundancy. This makes it difficult to learn the map without using very large datasets and

a mixture with a large number of kernels.

Many of the redundant positions may never be used by human speaker because they

are difficult to reach or perceived as uncomfortable. While our articulatory model does not

contain any measure of how comfortable a certain position is, we have manually defined three

corner vowels that specify the outer boundaries for what can be perceived as a comfortable

zone. These positions are then used as a starting point for further exploration by adding

Gaussian noise.

To compare the two approaches, two separate training sets were created, one using unre-

stricted random sampling containing 50,000 samples, and another set using restricted sam-

pling around the corner vowels containing 10,000 samples.

5.2.2 Training the MDN

Before starting the actual training, the network weights must be initialized. To get a good

starting point, the target vectors of the training data are first clustered into a defined number

of groups using K-means. The number of groups is equal to the number of mixtures in the

MDN, and the mean target values for each group are chosen as the bias for means of each

mixture. The number of target vectors in each cluster is used to set the bias for the priors,

and a fixed value is used to set the bias for the variance. The rest of the weights are initialized

using random numbers.

During training, each example is presented to the network, which calculates the outputs

given the current weights. The outputs are compared with the target values and the errors

are calculated according to error expressions above. These errors are then back-propagated

through the network and the weights are adjusted in order to decrease the error. Figure 5.4

shows how the training error decreases for each epoch, i.e. each time the complete training

set has been presented to the network.

5.2.3 Evaluation

After training, the network was evaluated using a set of 12 vowels that are included in

VT calcs, and also compatible with the model in jArticulator. The reason for using this
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Figure 5.4: Training error of the MDN. The error decreases for each epoch, i.e. each time
the training set has been presented to the network.

rather limited set for evaluation, instead of creating a large test set covering a wider range

of possible articulatory positions, is that we are specifically interested in knowing how well

the map works for typical speech sounds and not very interested in how well it might work

for other types of sounds even if those can be produced by the articulatory model.

Both the error of the mapped positions and the error of the resynthesized speech sound

was evaluated for different number of mixtures, see Figure 5.5 and Figure 5.6 respectively.

For the acoustic error, we only show the result obtained when using the mixture with the

highest prior. For the position error, we show three different results: 1) the result using only

the mixture with the highest prior, 2) the best result obtained with any of the three mixtures

with highest prior, and 3) the best result obtained using any of the M mixtures.

It can be noticed that the error of the resynthesized speech sound is less than half when

using 10 mixtures compared to using a single Gaussian. On the other hand, there is no

improvement in the estimated position when increasing the number of mixtures, as long as

only the mixture with the highest prior is used. This should not come as a surprise though.

If a speech sound can be produced using several different vocal tract positions there is no way

to tell from which of these position it was actually produced. Using a single Gaussian will

be equivalent to using a common least squares network, and the estimated position will be a

weighted average of all possible solutions. Unfortunately, the average of two positions that

create the same sound may result in a position that creates a completely different sound. If we
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Figure 5.5: Sum of squared errors for the estimated vocal tract positions when training with
different number of components

Figure 5.6: Sum of squared acoustic errors for the synthesized sound (using the vocal tract
position with highest prior), after training with different number of mixture components
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have several mixtures, but only select the position coming from the mixture with the highest

prior, this position may be even further away from the position that actually produced the

mapped sound, while still being able to reproduce the same sound. On the other hand, if we

compare the original position with not the position with the highest prior, but several of the

mixtures, the error should be reduced. This is also what can be seen in Figure 5.5.

Table 5.1: The priors (i.e. mixing coefficients) for each mixture component when the network
is presented with different vowel sounds.

vowel 1 2 3 4 5 6 7 8 9 10

ie 0.0050 0.0001 0.9511 0.0004 0.0000 0.0000 0.0000 0.0000 0.0435 0.0000
ey 0.0445 0.0122 0.4854 0.0521 0.0006 0.0005 0.0002 0.0004 0.4014 0.0027
eh 0.0656 0.2279 0.0841 0.2414 0.0099 0.0104 0.0084 0.0845 0.0624 0.2054
ah 0.0112 0.2077 0.0031 0.1203 0.0216 0.0190 0.0195 0.2357 0.0058 0.3561
aa 0.0022 0.2370 0.0000 0.0807 0.0563 0.0710 0.0712 0.2443 0.0005 0.2369
ao 0.0020 0.0762 0.0000 0.0841 0.2415 0.1047 0.0734 0.2433 0.0005 0.1742
oh 0.0021 0.0815 0.0000 0.0709 0.3696 0.1108 0.0658 0.1740 0.0009 0.1243
uw 0.0246 0.0593 0.0000 0.0650 0.5746 0.1470 0.0220 0.0429 0.0158 0.0487
iw 0.4646 0.0780 0.0320 0.1123 0.0290 0.0089 0.0024 0.0246 0.2037 0.0445
ew 0.1757 0.2814 0.0052 0.1330 0.0363 0.0214 0.0066 0.0794 0.1703 0.0908
oe 0.1121 0.2275 0.0777 0.1954 0.0142 0.0131 0.0066 0.0782 0.1130 0.1623

Table 5.2: Motor parameters for each mixture component for vowel oe

mixture jaw tongue pos tongue shape apex lip height lip protrusion

1 -0.8249 -0.5310 0.5203 -3.7408 0.6561 -2.5013
2 0.0686 0.2140 0.6580 -1.6138 0.5913 0.1685
3 1.1385 1.5579 1.2080 -1.3217 -0.4465 -2.5630
4 -0.9942 -0.5277 0.4814 -1.9700 0.0730 -1.4687
5 0.3132 -0.1453 0.4649 -1.0988 0.1584 -1.4087
6 3.0514 0.6096 0.7904 0.0395 1.2104 1.1393
7 1.4757 0.5679 0.0509 -0.1324 0.9555 0.7901
8 0.7334 0.6216 0.2125 -0.3468 0.5694 0.0775
9 0.1459 0.3121 0.9534 -2.1644 0.7840 -1.4255
10 -0.3277 0.1779 0.3418 -0.9043 0.1715 -0.7665

original -1.0 -0.5 0.5 -2.0 0.2 -0.5

Table 5.1 shows the priors for each component in the case of 10 mixture components.

For some vowels, such as ie, there is a strong prior for a single component, while for other

vowels, such as oe, there are several components with similar priors. Table 5.2 shows center

positions for each of the mixtures for the vowel oe. Despite the relatively large differences in
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articulatory positions, mixture component 2 and mixture component 4 produce very similar

speech sounds. This can be seen by comparing the spectra of the two, Figure 5.7.
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Figure 5.7: Frequency spectra of the synthesized speech signal, from two different positions
mapped with the MDN.

5.3 Conclusions

This chapter has explained the inversion problem, i.e. how to retrieve the articulatory po-

sitions that have been used to create a speech sound. Due to the one-to-many relationship,

an MDN has been used for the inversion map. It is shown that by increasing the number of

mixture components we can both create a more accurate map and at the same time find sev-

eral alternative articulatory positions that can be used to reproduce a given speech sound. It

is also shown that restricting the babbling around what can be seen as comfortable positions

make it easier to learn the map.
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Chapter 6

Learning initial speech units

We have seen how to define and learn audio-motor maps doing babbling. This is the first step

towards being able to use motor space, i.e. the articulatory space, for learning new speech

sounds and recognizing those sounds based on motor primitives.

In the introduction of this thesis we identified two additional steps based on a similar work

on grasping [80]: gaining source invariance, and imitations. We also discussed some of the

similarities and differences between learning to grasp and learning to produce speech sounds.

One of the main differences was the increased importance of interactions when learning to

speak. There are two reasons for this. The first reason is that speech is specifically about

communication and there is no natural reward for producing a speech sound, and interactions

are therefore needed to provide that reward. For grasping, being able to grasp an object can

be seen as rewarding in itself.

The other reason that interactions are more important when learning to speak is that

gaining source invariance for interspeaker differences is a much harder problem than the

related problem of overcoming view-point differences for grasping. Since a view-point trans-

formation may be easier to do than to overcome acoustic inter-speaker differences, we will

also look at how vision in the form of lip-reading can be used to facilitate the mapping. It has

been shown that in order to babble naturally it is important for infants to establish visual

contact with others in order to [88].

In this chapter we will discuss how interactions can be used both in order to gain speaker

invariance and to learn an initial set of speech sounds that will later be used as building

blocks.

71
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6.1 Gaining speaker invariance

The robot’s first interactions are simply extensions of the babbling where the robot articulates

sound and then listen for a response from the caregiver. If the response from the caregiver

is an imitation of the robot’s utterance, the robot can use not only the sound produced by

itself, but also that from the caregiver to update its sensorimotor maps. Repeating this with

several caregivers allows the robot to create a speaker-independent map. However, if the

caregiver is in fact not repeating the same utterance, doing this could potentially destroy the

map.

As been explained in the previous section, in the case of infant-adult interactions, there

is around 20% chance that an eventual response is actually an imitation. Even though

this percentage can be made much higher in a human-robot interaction where the caregiver

is aware of the learning strategy of the robot, we still want the learning to work under

natural conditions. It is therefore necessary for the robot to be able to separate imitations

from non-imitations. This can be done by comparing some simple prosodic features in the

acoustic signals produced by the robot and the caregiver. In the study executed together

with the linguistic department of Stockholms university [55], it was found that comparing

the number of syllables and the duration of the last syllable was enough to get a good

imitation classification for early infant-adult interactions. As the infant gets older more

prosodic features need to be compared in order to get a good classification. A threshold is

used to decide when the prosodic features are sufficiently similar to classify the caregiver’s

utterance as an imitation. This threshold is considered to be innate. Details on how we

model speech imitations, including which features and threshold that were chosen will be

given below. After that we will discuss how visual information can be used to facilitate the

mapping.

6.1.1 Modeling speech imitations

While robots usually follow very strict imitation games as described above, adult-child in-

teractions tend to be much more complex. For the robot to be able to learn its maps under

such natural conditions it has to be able to separate imitations from non-imitations. Our

hypothesis is that this can be done by comparing the prosody of the utterance from the infant

or robot with that of the caregiver.

A dataset with natural adult-infant interactions was created at the Phonetics Labora-

tory, Stockholm University. Data was recorded during 15 half-hour sessions. Seven Swedish

infants, with ages ranging from 185 to 628 days, participated in one, two or three sessions

each. A lot of care was taken to allow for natural interactions during the experiments. The
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recordings were made in a comfortable home-like environment. The infant and the adult

were free to move around during the recordings and they were also provided with a number

of toys. In total, these recordings generated an adult-infant interaction speech data base

consisting of 4100 speech samples.

To get a ground-truth for which utterances that should be considered as imitations, a

listening experiment was performed. A computer program created in LabView was used to

select utterances from the database and present those for the user. The program randomly

draws an utterance from the pool of adult utterances and then randomly selected the utter-

ance that the infant produced within five seconds before or after the adult’s utterance. For

the imitation judgments 20 subjects were each presented with 150 pairs of utterances (50

from each age group). Of these the subjects evaluated 22% as imitations, 19% as uncertain,

and 59% as non-imitations.

There was no significant difference in the number of perceived imitations between the

three age groups. However, there was an obvious difference in the way subjects classified a

pair of utterances based on the perceived age of the infants. The older the infant are the

higher are the demands on matching parameters. This is nothing new and can be illustrated

with the familiar example of [baba] that happily is rewarded as an imitation of both [mama]

and [papa] when the infant is very young, but it is still worth to mention as it has implications

on the way we chose to build our classifier. Further analysis of the results showed that in 52%

of the cases that a pair of utterances was judged as an imitation it was the adult imitating

the infant.

Next, we wanted to create a classifier that is able to find when there is a true imitation,

based on the prosodic features of the utterances. We used the prosodic features explained in

section 3.2.2.

For the number of syllables we simply classified every utterance-pair where the number

of syllables of the infant and the adult utterance did not match as a non-imitation. Such

a straightforward classification could not be done for the other features. Even for a true

imitation we cannot expect the difference between the same features of the two utterances

to be zero. We used a gamma-distribution to model the differences for each feature in the

case of an imitation and a non-imitation. The parameters of the gamma-distribution were

then estimated from the normalized distance between the feature values for each pair of

utterances. This was done separately for utterances judged as imitations and non-imitations,

as well as for each age group.

In order to mimic the way human listeners seemed to incrementally demand a more

detailed match between the utterances as infants got older, we took a hierarchical approach

by adding an extra classifier for each age group. For the youngest infants the length of
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the last syllable showed to be the most efficient feature for separating imitations from non-

imitations. We chose the crossing between the two distributions in 6.1 as a separation point

for when an utterance should be classified as an imitation. Doing so 74% of the utterances

classified as imitations had also been classified as imitations by the panel subject, while 26%

were false positives. Using the same feature for the data in the second age group, we only

get around 50% true classifications. However, when adding a second classifier based on the

fourth feature, i.e. difference in length between the two last syllables, the combined classifier

gave around 80% true positives for the second age group and around 65% for the third age

group. Finally we added a third classifier based on the difference in pitch which was able to

completely eliminate the false positives for the third test group.

Figure 6.1: Expected feature values for imitations (red) and non-imitations (blue). From left
to right, the plots show the features used for the first classifier (difference in length of the
last syllable), second classifier (features of classifier one + difference in length between the
two last syllables), and third classifier (features of classifier two + difference in pitch).

Finally the imitation classifier was tested during a simple human-robot interaction game,

where the robot randomly selected a number of points in the vocal tract model and created

trajectories between those. The utterance was then synthesized and played for the caregiver

who tried to imitate the sound. When presenting the utterance from the robot and the

caregiver to the classifier 66% were classified as imitations by the first classifier, 39% by the

second, and only 3% by the third classifier.

We also tested how important it is for the robot to be able to detect false imitations when

trying to learn the map between human speech sounds and its own vocal tract by doing

a simulated imitation game. For this experiment we used a database of Portuguese vowel

sounds from 14 different speakers and the setup described in [54]. Data from seven of the

speakers were used for training the network and data from the other seven were used for

testing. The robot was presented a mix of correct vowel imitations and false positives. First

we tested how well the robot could learn the map without checking if it is a true imitation by

using only 22% correct data. Then we simulated the use of the hierarchical classifier and first

trained with 72% correct data, followed by 80%, and finally 100% correct data. We found
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that the robot will not be able to learn the map from natural interactions without being able

to separate imitations from non-imitations. However, when using the suggested hierarchical

classifier it would be able to make use of imitations found during natural interactions in order

to learn the map. We also notice that a residual number of false positives around 20% do

not affect the quality of the map for other than the training data.

6.1.2 Using visual information

When available, the infant/robot can also make use of visual information in order to estimate

the articulatory positions used to produce an utterance. As the robot cannot see its own lip

movements, it is again dependent on the interaction with the caregiver. During face to face

interaction with the caregiver the robot can estimate the openness of the mouth and given

that the caregiver is imitating the utterance from the robot, it is possible for the robot to

map this to its own articulatory positions. This is done simultaneously as the robot updates

its audio-motor map and hence it is again the comparison of the prosodic features of the

utterances produced by the robot and the caregiver that tells the robot if it should use the

response to update its maps or not.

Lip tracking

The purpose of the visual sensor is to provide visual information that can help estimating the

parameter values of the vocal tract parameters. While there are methods to find the exact

contour of the lips, like the usage of snakes or active contour methods [67], these methods are

typically too complex to use in speech recognition. With no a priori assumption of the shape

of the lips the estimation becomes slow and more error prone. Furthermore, the complexity

of the final description makes further data processing costly. For practical applications where

we need to track the movements of the lips in real-time, and are interested in some simple

feature like the area of the mouth opening rather than the exact contour, we need a compact

representation of the lips. In this work we have chosen to represent the lips by an ellipse,

which is fitted to the pixels that belong to the lips. The pixels that belong to the lips are

found by using color segmentation. The color segmentation can be done in several different

ways. It is usual to extract the color from the first frame using the initial position of the

lips. In [118] the whole color distribution of the lip region is calculated and modeled as a

Gaussian mixture and the EM method is used to estimate both the mixture weights and the

underlying Gaussian parameters. Here we use a much simpler method and simply model a

lip by its redness, where we define the redness as:



76 CHAPTER 6. LEARNING INITIAL SPEECH UNITS

Redness = R2/(R2 +G2 + B2) (6.1)

where R, G, and B are the red, green, and blue value of an RGB-image. If the redness of a

pixel is above some threshold we define the pixel as a lip. The threshold can be calculated

from the initial frame, but we have chosen a fixed threshold of 0.9. This threshold seems

to work well even for different persons. Of course there are other pixels apart from the lip

pixels that are classified as red so we need to know the approximate position of the lips and

only use those pixels to fit the ellipse. Here we use a face detection algorithm, based on [124]

and [78]. The face detection algorithm not only gives us an initial estimate for the position

of the lips, but also gives us the size of the face which is later used to normalize the area of

the mouth opening. However, the face detection algorithm is rather slow so the position and

size of the head is therefore only calculated once in the beginning of every experiment and

the subject with which the robot interacts is assumed to maintain approximately the same

distance to the robot during each experiment.

To fit the ellipse to the lip pixels we use a least square method described in [34]. The

result is shown in Figure 6.2. We then use the ellipse to calculate the area of the mouth

opening. The ratio between the area of the mouth opening, given by the lip tracker, and

the area of the face given by the face tracker, is used as a visual feature and is sent to the

vision-motor map.

As said before, the face detection is too slow to be useful for tracking the movements of

the lips between two frames in the video stream. We therefore use the method suggested

by Lien et. al [77]. They use Lucas-Kanade tracking algorithm [82] to track the movements

of the lips between adjacent frames. One problem with the tracking algorithms is that it

is sensitive to the initial feature point selection as most points on the lips have ambiguities

around the lip edges. Here we solve this by looking for Harris features [45] around the lips

and use these as initial points that will be tracked. The result gives us a sufficiently good

estimate to maintain an initial estimate of the lip position over the video sequences used in

our experiments.

6.2 Learning speech units by imitation

In order to find useful target positions for creating speech sounds, the robot tries to imitate

the speech sounds pronounced by its caregiver. Given that the robot is able to correctly

map the caregiver’s utterances to its own articulatory space, it should be able to recreate

the utterance. However, due to the difficulties explained above, the robot is not able to

fully learn the map before it has found the target positions. Still the initial map should be
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Figure 6.2: Lip tracking

accurate enough in many cases. By trying to recreate the caregiver’s utterance using the

mapped positions, the robot is able to verify if the mapping was correct.

This scenario is equivalent to having the infant trying to imitate the caregiver. As ex-

plained in the previous chapter it is common that the caregiver needs to repeat the utterances

several times and adapting its voice in order to help the infant to find the right positions.

The same technique is used in the human-robot interaction. If the caregiver finds the robot’s

utterance is an acceptable imitation it gives a positive reinforcement that causes the robot

to store the positions used to create the utterance. If the caregiver does not consider the ut-

terance an acceptable imitation the caregiver can try to adapt the voice in order to overcome

shortcomings in the map.

6.2.1 Clustering of target positions

Initial speech units can be found through an hierarchical clustering algorithm [46]. The

algorithm starts by creating one cluster for each target position. It then iteratively joins

the two clusters that have the smallest average distance between their items until only one

cluster remains.

The resulting hierarchical tree is then analyzed in a second step to determine the correct

number of clusters. For each level of the clustering process, we have different relationships

between data groupings. The question is then to find the ”natural” grouping for this dataset.

To estimate the adequate number of clusters in the dataset we have used the Gap statistic

[119]. This function compares the within-cluster dispersion of our data with that obtained

by clustering a reference uniform distribution. This is to compare the gain of raising the

cluster number in a structured data with that arising from adding another cluster to a non-
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informative and not structured set of points. To find the optimal number of clusters we look

for the first maximum in the Gap. Each position within the same cluster is considered to be

part of the same speech unit in the motor vocabulary.

6.2.2 Imitation experiment

The objective of this experiment is to show how the robot can learn speech units, i.e. artic-

ulatory target positions, corresponding to a number of Portuguese vowels.

To learn vowels the robot first has to create an initial sound-motor map. Using the initial

map it can then try to imitate the caregiver in order to get some first estimated motor

configurations that represent vowels in the speech motor vocabulary. Local babbling is used

to explore the neighborhood of the terms in the vocabulary, while the caregiver gives feedback

on the result. Finally, the clustering algorithm is used to group all positions learned into a

feasible number of elements in the vocabulary.

The initial sound-motor map is created through random babbling. We generated 10000

random positions vectors for this phase. Each vector contains information about the position

of the 6 articulators used in jArticulator. These configurations are used by the speech pro-

duction unit to calculate the resulting sound, which is coded in MFCC by the auditory unit.

The sound-motor-map then tries to map the MFCC back to the original articulator positions

that originated the sound. The error resulting from the comparison with the correct motor

configuration given by the random articulator generator is used with a back-propagation al-

gorithm to update the map. Repeating this will create an initial map between sound and

the articulator positions used to create this sound.

The second step can be seen as a parroting behavior where the robot tries to imitate the

caregiver using the previously learned map. Since the map at this stage is only trained with

the robot’s own voice, it will not generalize very well to different voices. This may force the

caregiver to change his/her own voice in order to direct the robot. There can also be a need

to over-articulate, i.e. exaggerate the positions of the articulators in order to overcome flat

areas in the maps that are a result of the inversion problem. When two or more articulator

positions give the same sound the initial maps tends to be an average of those. However, for

vowels the articulator positions are usually naturally biased towards the correct position as

the sound is more stable around the correct positions than around the alternative positions.

For most of the vowels it was not necessary to adapt the voice too much. Typically between

one and ten attempts were enough to obtain a satisfying result. When the caregiver is happy

with the sound produced by the robot it gives positive feedback which causes the robot to

store the current articulator positions in its speech motor vocabulary. Using this method the

caregiver was able to teach the robot prototype positions for nine Portuguese vowels. Visual
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inspection of the learned articulator positions showed that the positions used by robot are

similar to those used by a human speaker, Figure 6.3.

Figure 6.3: Articulator positions used by the robot for the Portuguese vowels. In the center we
show the positions of the vowels in the International Phonetic Alphabet (IPA). The vertical
axis in the IPA corresponds to the vertical position of the tongue and the horizontal axis to
the front-back position when the vowel is pronounced by a human speaker. For the simulated
articulator positions used by the robot the upper line corresponds to the soft palate and the
lower line to the tongue. There is a strong correlation between how the robot and a human
articulate the vowels.

Since the vowel positions were learned under controlled forms where only one position

was stored for each vowel sound we did not do any clustering of the target positions, but

simply let each position represent a speech unit. In [54] we did a larger scale experiment

where 281 target positions were learned, each representing one of the nine vowels above. We

then used the hierarchical clustering algorithm together with GAP statistics to group the

target positions into a number of speech units. This showed that the robot automatically



80 CHAPTER 6. LEARNING INITIAL SPEECH UNITS

would group the positions into nine speech units corresponding to the Portuguese vowels.

Here we instead study how well the robot is able to recognize the learned vowels when

those are pronounced by human speakers. We especially look at how the recognition rate is

improved as a result of the different stages of babbling and interaction. To study this, training

and test data were collected with 14 speakers (seven males and seven females) reading words

that included the nine Portuguese vowels above. We used the vowels from seven speakers for

training and the other seven for testing. Each speaker reads the words several times, and the

vowels were hand labeled with a number 1 to 9. The amplitude of the sound was normalized

and each vowel was then divided into 25 ms windows with 50% overlap. Each window was

then treated as individual data which resulted in a training set of 2428 samples, and a test

set of 1694 samples.

During training, we simulated the interaction where the humans imitate the robot by

having the robot pronouncing one of its vowels at the time, and then present the robot with

the same vowel from one of the humans in the training set. In this step we used both auditory

and visual input. The auditory input consisted of a single window of 25 ms sound, and the

visual input is an image showing the face of the human at the same instant of time. The

robot then mapped these inputs to its vocal tract positions, compared the result with the

position used by the robot to create the same sound, and used the error to update both the

auditory-motor map and the vision-motor map.

For testing, we let the robot listen to the vowels pronounced by the speakers in the test

set, i.e. speakers previously unknown to the robot. The input was mapped to the robot’s

vocal tract positions and the mapped positions were compared to the vowel positions stored

in the speech motor vocabulary. Based on the minimum Euclidean distance, each position

was classified as one of the stored vowel positions.

We performed this test several times using the maps obtained at each of the different

stages of babbling and interaction. First we tested how well the robot was able to map

the human vowels using maps that had only been trained using the robot’s own voice, i.e.

after the initial random babbling. As expected at this stage, the estimated positions were

relatively far from the correct ones and it was not possible to recognize more than 18% of the

human vowels. This is mainly due to the difference between the voice of the robot and the

voices of the human adults in the test set, and it is because of this that the human caregiver

may need to adapt his or her voice during the early interaction with the robot.

When the robot has already had some interaction with humans, through the people in the

training set, we noticed a significant increase in the performance. The distance between the

vocal tract positions estimated from the human utterances in the test set, and the positions

used by the robot to create the same utterance, decreased, and the recognition rate improved.
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Table 6.1: Recognition rates at the different stages of development

Training data Sum of square distance recognition rate
Only babbling 9.75 18%

Using interaction 0.52 58%
Using interaction with vision 0.47 63%

Using only sound as input, the recognition rate became close to 58%, and using both sound

and visual data the recognition rate reached 63%. A summary of the results is shown in

Table 6.1.

6.3 Conclusions

In this chapter we have shown how the robot can learn speech units by imitating the caregiver.

However it is also found that imitation is not only about the robot or the infant imitating

its caregiver, having the caregiver imitating can be just as important for language learning.

When the caregiver imitates the robot it gives the robot a possibility to extend its audio-

motor map so that it maps utterances from the caregiver to its own articulatory positions. By

making use of this during interactions with several different people, the map can continuously

become more speaker invariant. This type of interactions, where it is the caregiver that

imitates, has been found common also in adult-infant interactions. It is shown that prosodic

features can be used in order to detect when there is an imitation.
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Chapter 7

Initial word learning

In the previous chapters we have shown how the robot can learn a sensory-motor map and use

this to acquire an initial set of articulatory speech units. We believe that this sensory-motor

map is important not only for being able to produce speech sounds, but also to recognize

those, and that articulatory speech units can be important building blocks for creating word

models.

However, infants start to segment words and recognize those even before they are able to

produce them. The hypothesis here is that the initial set of words can be acquired without

the need for any linguistic structure such as speech units. This follows the ecological and

emergent approach to language learning.

In order to create this initial word model the robot looks for recurring acoustic events

and associates those to visual objects in its environment. A short term memory (10-20 s

length) is used to restrict the search space and increase the possibility that the recurring

acoustic patterns that are found refer to the same object. Recurring patterns in the short-

term memory are paired with the visual object and send to a long-term memory where they

are organized in hierarchical trees. Finally, the mutual information criterion [18] is used to

find which words that are consistently used for a certain object.

This approach was first described in CELL [101], Cross-channel Early Lexical Learning.

There, an architecture for processing multisensory data is developed and implemented in

a robot called Toco the Toucan. The robot is able to acquire words from untranscribed

acoustic and video input and represent them in terms of associations between acoustic and

visual sensory experience. Compared to conventional ASR systems that maps speech signal

to human specified labels, this is an important step towards creating more ecological models.

However, important shortcuts are still taken, such as the use of a predefined phoneme-

model where a set of 40 phonemes are used and the transition probabilities are trained

off-line on large scale database. In [117], no external database is used. Instead the transition

83
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probabilities are trained online only taking into account utterances that have been presented

to the system at the specific instance in time. While this makes the model more plausible

from a cognitive perspective, infants may not rely on linguistic concepts as phonemes at all

during these early stages of language development. In this work we have instead chosen a

more direct approach and map the auditory impression of the word as a whole to the object.

Underlying concepts like phonemes are instead seen as emergent consequences imposed by

increasing representation needs [92] [74], and will be discussed in the next chapter.

7.1 Detecting visual objects

Starting with the object detector, the robot takes a snapshot of the camera’s view and

segments the image in order and look for the object closest to the center of the image. The

segmentation is done by background subtraction followed by morphological dilation. Using

the silhouette of the object we create a representation of its shape by taking the distance

between the center of mass and the perimeter of the silhouette. This is done for each degree

of rotation creating a vector with 360 columns. The transformation of an image to the object

representation is illustrated in Figure 7.1.

7.2 Finding recurring events

In order to find recurring patterns, the auditory sound stream is first sequenced into utter-

ances. This is done automatically when the sound level is under a certain threshold value for

at least 200 ms. Each utterance within the short term memory at a given time is compared

pair-wise with all other utterances in the memory in order to find recurring pattern. For

each utterance-pair we first make sure that the utterances have the same length by padding

the shortest utterance. The utterances are then aligned in time and we calculate the sum

of differences between their mel coefficients creating a vector with the acoustic distance be-

tween the two utterances at each window. The second utterance is then shifted forward and

backward in time and for each step a new distance vector is calculated. These vectors are

averaged over 15 windows, i.e. 200 ms, and combined into a distance matrix as illustrated in

Figure 7.2. By averaging over 200 ms we exclude local matches that are too short and can

find word candidates by simply looking for minima in the distance matrix. Starting from a

minimum we find the start and the end points for the word candidate by moving left and

right in the matrix while making sure that the distance metric at each point is always below

a certain critical threshold.

In order to take advantage of the structure of infant directed speech and to mimic infants’
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Figure 7.1: Original image (top), silhouette image after background subtraction and mor-
phologic operations (center), and the silhouette perimeter in polar coordinates (bottom).
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apparent bias towards target words in utterance-final position and focal stress, we also check

for these features. For a word candidate to be considered to have utterance-final position

we simply check that the end of the candidate is less than 15 windows from the end of the

utterance. To find the focal stress of an utterance we look for the F0-peak, i.e. the pitch.

While there are many ways for adults to stress words (e.g. pitch, intensity, length) it has

been found that F0-peaks are mainly used in infant directed speech [32]. If the F0-peak of the

utterance as a whole is within the boundaries of the word candidate, the word candidate is

considered to be stressed. If a word candidates is not stressed and in utterance-final position

we may reject it with a specified probability.

Figure 7.2: Finding word candidates from the utterances ”Titta här är den söta Dappan” and
”Se p̊a lilla Dappan”. The unit for the axis is time (in number of windows). The horizontal
axis represents the first utterance, and the vertical axis the number of windows that the
second utterance has been slided to the left or right. The color shows how well each window
of the two utterances matches each other. The best match is found in the last part of the
first utterance, when the second utterance is shifted 15 windows to the right. This match
corresponds to the word ”Dappan”

The same pattern matching technique is also be used to compare visual objects. When

comparing two object representations with each other we first normalize the vectors and then

perform a pattern matching, much in the same way as for the auditory representations, by

shifting the vectors one step at a time. By doing this we get a measurement of the visual
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similarity between objects that is invariant to both scale and rotation.

7.3 Hierarchical clustering

When both a word candidate and a visual object are found, their representations are paired

and stored in a long term memory. To organize the information we use a hierarchical clus-

tering algorithm [46]. Word candidates and visual objects are organized independently into

two different tree clusters. The algorithm starts by creating one cluster for each item. It

then iteratively joins the two clusters that have the smallest average distance between their

items until only one cluster remains.

While the algorithm is the same for both trees, the distance measure varies slightly

between them. The distance between the visual objects is measured directly through the

pattern matching explained above. For the acoustic similarity we use Dynamic Time Warping

(DTW) [105] to measure the distance between different word candidates. The reason to use

DTW instead of directly applying the pattern matching described earlier is to be less sensitive

to how fast the word candidate is pronounced.

7.4 Multimodal integration

When we have interconnected multimodal representations, which is the case for the word

candidates and visual objects that assumingly refer to the same object we can make use of

these connections, not only to create associations, but also to find where we should cut the

trees in order to get a good representations of the words and the objects. In order to find

which branch in the word candidate tree that should be associated with which branch in the

object tree we use the mutual information criterion [18]. In the general form this can be

written as

I(X;Y ) =
∑

x∈X

∑

y∈Y

p(x, y)log

(

p(x, y)

p1(x)p2(y)

)

(7.1)

Where p(x, y) is the joint probability distribution function of X and Y , and p1(x) and

p2(y) are the marginal probability distribution functions of X and Y respectively.

We want to calculate I(X;Y ) for all combinations of clusters and objects in order to find

the best word representations. For a specific word cluster A and visual cluster V we define

the binary variables X and Y as
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X = {1 if observation ∈ A; 0 otherwise}

Y = {1 if observation ∈ V ; 0 otherwise}

The probability functions are estimated using the relative frequencies of all observations

in the long-term memory, i.e. p1(x) is estimated by taking the number of observations within

the cluster A and dividing with the total number of observations in the long-term memory.

In the same way p2(y) is estimated by taking the number of observations in the cluster V

and again dividing with the total number of observations. The joint probability is found by

counting how many of the observations in cluster A that is paired with an observation in

cluster V and dividing by the total number of observations.

In this experiment the robot makes use of multimodal information in order to learn word-

object associations when interacting with the caregiver. The experimental setup is shown in

Figure 7.3.

The caregiver shows a number of toys for the robot and, at the same time, talks about

these objects in an infant directed speech style. The objects that were used during the

experiment were one ball and two dolls named ”Pudde” and ”Siffy”. The experiment was

performed by demonstrating one object at a time by placing it in front of the robot for

approximately 20 s, while talking to the robot about the object by saying things like ”Look

at the nice ball!” and ”Do you want to play with the ball?”. Each utterance contained a

reference to a target word and we made sure that the target word has always stressed and

in utterance-final position. For the dolls we referred to them both by using their individual

names and the Swedish word for doll, ”docka”. The ball was always referred to using the

Swedish word ”bollen”.

During the length of one demonstration, sound and images are continuously stored in the

short-term memory. The sound is then segmented by simply looking for periods of silence

between the utterances and each utterance is then compared to the others as explained in

the previous section. Each word candidate, i.e. matching sound pattern, in the short-term

memory is paired with the visual representation of the object and sent to the long-term

memory. After having demonstrated all three objects we repeat the procedure once more,

but this time with the objects in slightly different orientations in front of the robot. This is

done in order to verify that the clustering of the visual objects is able to find similarities in

the shape despite differences in the orientation of the objects.

When word candidates have been extracted from all six demonstrations, the hierarchical

clustering algorithm is used to group word candidates in the long-term memory that are
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Figure 7.3: Experimental setup for robot test

acoustically close. The result from the hierarchical clustering of the word candidates and the

visual objects can be seen in Figure 7.4. The numbers at each leaf shows the unique identifier

that allows us to see which of the word candidates that was paired with which of the visual

objects.

Looking only at the hierarchical tree for the word candidates it is not obvious where the

tree should be cut in order to find good word representations. By listening to the word

candidates we notice that the cluster containing candidates (25 26 19 20 2 6 18 14 16 1)

represent the word ”dockan”, the cluster (3 7 4 9 5 8 10 12 15 11 13 17) represent the word

”Pudde”, the cluster (21 22 23 27 28 29 24 31 30) represent the word ”Siffy”, and the cluster

(32 33 34 36 35) represent the word ”bollen”. The hierarchical tree for the visual objects

may look simpler and it is tempting to select the five clusters in the bottom as our objects.

However, in this case it is actually the clusters one level up that represents our visual objects.

To find out which branch in the respective tree that should be associated with which

branch in the other we calculate the mutual information criterion. Calculating the mutual

information criterion for all pair of branches shows that we get the highest score for associating

the word candidates (32-36) with the same visual objects (32-36). This is what we could

expect since all visual observations of ”bollen” were also paired with a correct word candidate.

In the case of the objects ”Pudde” and ”Siffy” part of the observations are not paired with

the object name, but instead with the word ”docka”. Still we get the second and third highest

scores by associating word candidates for the word ”Pudde” with object Pudde and the word
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”Siffy” with object Siffy respectively. We can also find that the branch above the visual

representations of Pudde and Siffy receives the highest score for being associated branch

containing word candidates for ”dockan”.

The experiment was repeated without putting any bias on word candidates that were

stressed and in utterance-final position. This resulted in four false word candidates for

the object Pudde and one for object Siffy. However, this did not affect the word-object

associations as these candidates were found in separate branches in the word candidate tree

and only received low scores by the mutual information criterion.

Figure 7.4: Above: Clusters of the extracted word candidates during the robot experiment.
Word candidates 1-17 are paired with object Pudde, nr 18-29 with object Siffy, and 32-36 with
object bollen. Below: Clusters of the extracted visual objects during the robot experiment.
Objects 1-17 corresponds to object Pudde, nr 18-29 to object Siffy, and 32-36 to object bollen.

A second experiment was performed using recordings of interactions between parents

and their infants. The recordings were made under controlled forms at the Department of

Linguistics, Stockholm University. A lot of care was taken to create natural interactions. The

room was equipped with several toys, among those two dolls called ”Kuckan” and ”Siffy”.

The parents were not given any information of the aim of the recordings but were simply
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introduced to the toys and then left alone with their infants. In this study we have only used

a single recording of a mother interacting with her 8 month old infant. The total duration

of the recording is around 10 minutes. The audio recording has been segmented by hand to

exclude sound coming from the infant. In total the material consists of 132 utterances with

time stamps and also object-references in those cases that an object was present. In 33 of

these the doll ”Kuckan” was present and in 13 of them the doll ”Siffy”. In total the word

”Kuckan” is mentioned 15 times and ”Siffy” is mentioned 6 times.

In this experiment we limit the short-term memory to 10 s. The utterances enter in

the short-term memory one at a time and any utterance older than 10 s is erased from the

memory. Word candidates that also have an assigned object label are transferred into the

long-term memory.
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Figure 7.5: Cluster formations from word candidates taken from infant directed speech. Word
candidates between 1 and 30 are paired with object Kuckan and word candidates between 31
and 35 are paired with Siffy. Using the mutual information criterion, cluster (32 33 34) gets
associated with Siffy and cluster (5 6 3 9 11 10 22 4 7 17 18) gets associated with Kucka.

After searching all utterances for word candidates we cluster all the candidates in the long-

term memory. The result can be found in Figure 7.5. Here we don’t have any hierarchical

tree for the visual objects. Instead we use the labels assigned by hand that can be used for

calculating the mutual information criterion. Doing so gives us that the object Kuckan is

best represented by word candidates (5 6 3 9 11 10 22 4 7 17 18) and Siffy by (32 33 34).

Listening to the word candidates confirms that they represent the names of the dolls, but

the segmentation is not as clear as in the humanoid experiment and there are a few outliers.

Among the word candidates associated with Kuckan, nr 22 was unhearable and nr 17 and 18

were non-words but with a prosodic resemble of the word ”Kuckan”. For the word candidates

associated with Siffy all contained parts of initial words.

When repeating the experiment without bias on focal stress and utterance-final position,

the number of word candidates grew significantly resulting in lots of outliers being associated

with both the objects. In the case of Kuckan it even caused the correct word candidates to
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be excluded from the branch that was associated with the object.

7.5 Conclusions

By making use of some characteristics, typically found in infant directed speech (IDS), the

robot is able to learn a set of initial words by looking for recurring patterns in the speech

stream and associating those with objects in the visual field.

The proposed method does not make use of any pre-programmed linguistic knowledge such

as phoneme-models, and is able to learn words both from recorded adult-infant interactions

and during direct interactions in an online experiment.



Chapter 8

Learning statistical models of words

and speech units

In the previous chapter we showed how a robot can learn an initial set of words using pattern

matching and multimodal learning. The described method works well for creating a small

vocabulary from a limited number of demonstrations, but unfortunately it does not scale very

well as the vocabulary grows. One of the issues is that the hierarchical trees continuously

grow as the number of demonstrations increase, which increases the time it takes to search the

trees. Another issue is that the acoustic distance between each word tends to get smaller as

the vocabulary grows, making it increasingly difficult to separate between the words. Similar

limitations can be found in other related works on pattern based word learning such as [1]

[116] [117], which are all limited to vocabularies below 50 words.

Infants, on the other hand, do not show any difficulties in learning larger vocabularies.

Instead there is an increase in the word learning rate, often referred to as a vocabulary

spurt, which seems to occur between the age of 12-18 months when the infant’s vocabulary

has typically grown to around 50 words [13] [25]. While it is still disputed whether there

exists a specific point in the developmental path where this spurt takes place or if it is

more of a gradual change [39], there are some evidence that the infants change the way that

they interpret the speech signal at this stage. Using a switch task experiment it has been

shown that infants of 14 months of age can learn to associate two dissimilar sounding words,

such as ”lif” and ”neem”, to two different objects, but fail on this task when the words are

phonetically similar, such as ”bih” versus ”dih” [110]. Using the same experiment with infants

of age 17-20 months showed that they were able correctly associate even similar sounding

words with different objects [128]. This increased sensitivity to phonetic details indicates

that the infants have started to learn the underlying structure of words, i.e. phonemes or

speech units, and make use of this for word recognition.

93
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These observations fit well with the ecological theory of language acquisition, where the

linguistic structure is seen as something that emerge from the need to handle the growing

vocabulary. By finding a number of speech units that represents the sounds used in the

particular language, words can then be expressed as a sequence these speech sounds. In

systems for Automatic Speech Recognition (ASR), a predefined phone model is typically

used as the speech units, and a large number of examples of each phone is used to create a

statistical model that captures the differences in pronunciation between different speakers.

A words is then created by using a Hidden Markov Model (HMM) that describes the phone

sequence and the transition probabilities between each phone. In this work however, we

specifically want to avoid having to provide linguistic structure in the form of a given phone

model and instead learn the structure.

In Chapter 6 we showed how different types of interaction games can be used to learn

an initial set of speech units. However, this set was mainly limited to vowels and a few stop

vowels. While this was partly due to limitations in the vocal tract model, it is still unlikely

that a complete set of speech units will emerge from these imitation games. We therefore

need an additional method for acquiring speech units that will allow us to create statistical

word models. A number of different methods have been proposed in related work on phone

acquisition. In [106] speech units are created with a bottom-up approach where similar

speech sounds are clustered in an hierarchical tree, and Bayes Information Criterion (BIC)

is used to select the proper number of speech units. One of the difficulties with this method

is the lack of a good measure for how useful the resulting speech units are in terms of word

learning. In [50] [51] the speech units are chosen specifically from the word recognition rate

obtained with HMMs based on those speech units. However, the use of a predefined number

of speech units and a given training vocabulary make this method less ecological. A more

ecological approach is taken in [62] where the number of speech units is increased iteratively

and evaluated using a multimodal word learning approach similar to that described in the

previous chapter.

Inspired by those methods, we propose a slightly adapted approach of that described in

[62], where the speech units are evaluated on the vocabulary learnt using our initial word

learning technique [58]. The main drawback with the original approach is the need to store

the complete utterances and visual stimuli received up until the point where the speech units

are created. While this may work well in a small and controlled experiment it becomes

less likely to work in more natural settings, especially considering that infants may develop

these models somewhere between the age of 12-18 months. In our approach the complete

utterances only need to be stored in a short-term memory for a few seconds until the pattern

matching has been done, and only recurring patterns are stored in a long-term memory.
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Other differences with the method proposed in this chapter is that we take advantage of the

speech units found during the imitation experiments, and that our speech units are defined

in both articulatory and auditory space.

In summary, the aim of this chapter is to acquire a set of speech units that can be combined

into words, and to express those in a statistical model that is able to capture differences in

rhythm and pronunciation. The first section is used to outline the statistical model while the

remaining sections focus on how each part of the model is learned.

8.1 Defining the statistical model

The statistical model used in this work is similar to those used in a standard ASR-system,

but with essential differences in how the model is learned.

In an ASR-system, the words are typically modeled using Hidden Markov Models (HMM).

An HMM consists of a fixed number of hidden states x1..n, where each state represents a

specific phoneme or speech unit. The states are called hidden since an observer cannot see

which of the states that is currently active. Instead, a vector of output parameters is observed

y. Each state has different probability distributions over the output parameters p(y|x). In

ASR-systems, the output vector typically consists of MFCC, and the conditional probability

distribution over the output vector is modeled with a Gaussian or mixture of Gaussians. The

speech unit model is illustrated in Figure 8.1.

Figure 8.1: Statistical model of the speech units
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Compared with the traditional methods, one of the differences in this work is the addition

of articulatory features in the output vector. Another difference is the way we estimate

the probability distribution. In an ASR-system those are estimated using a labeled phone

database, specifically defined for the language that should be learnt. As explained in the

introduction we want to avoid using a predefined phone model and instead use a combination

of speech units learned through the interaction with the caregiver and speech units that are

learned in an unsupervised manner using clustering techniques.

For a given language, each speech unit has a specific probability to occur during natural

speech, and the probability of occurring at a specific time depend on which speech unit that

was used before. In an HMM it is assumed that the probability of being in state i at time

t only depend on the state at time t− 1, and a state transition matrix is used to model the

probability of each transition. By connecting each speech unit with all other it is possible to

create a general model of the language, also called a phonotactic model, see Figure 8.2.

Figure 8.2: Phonotactic HMM based on the speech units

The phonotactic model makes it is possible to calculate the most likely state sequence from

a given speech input. We will use this to transform our initial word models into statistical

models. By calculating the most likely state sequence for a given word, we can then create

a specific HMM for that word. The word models differ from the phonotactic model in that

each state is only connected to itself and to the next state in the sequence, see Figure 8.3.

By evaluating the resulting word models we get a measure on how well the chosen number

of speech units works. Finding the optimal number of speech units is therefore an iterative

process, starting with a low number of speech units and increasing the number as long as the

word models improve.



8.2. DEFINING THE SPEECH UNITS 97

Figure 8.3: Example of statistical word model

The steps involved in creating the statistical models of words and speech units is sum-

marized below. In the following sections we will then explain the learning methods used for

each of the steps.

1. Defining the speech units

2. Creating a phonotactic model.

3. Finding the parameters of the phonotactic model.

4. Create word models based on the speech units.

5. Evaluate the word models.

8.2 Defining the speech units

No predefined phone model or database is used to create the statistical model. Instead

an arbitrary number of speech units are chosen and the models are trained from unlabeled

natural speech in a completely unsupervised way.

For the first iteration a very small number of speech units are chosen. K-means is used to

cluster the speech data into the specified number of speech units. In the general case, random

speech samples are used to initialize the K-means algorithm. Here we can alternatively make

use of our initial speech units, found through the interaction with the caregiver, and use

those as starting points for the K-means algorithm. The K-means algorithm then has the

following steps:

1. The starting points are used as mean values for each of the clusters.

2. Each speech sample is associated with the closest cluster.

3. The centroid of each of the k clusters becomes the new means.

4. Steps 2 and 3 are repeated until convergence has been reached
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The clusters from the K-means algorithm are then used to initialize the statistical model.

The probability distribution for the output vector is estimated by calculated the means and

covariance for all the samples within each cluster.

Next we want to estimate the transition probabilities for each speech unit. This is done

by creating a single HMM where each state, i.e. speech unit, is connected to all other states.

This can be seen as a phonotactic language model that shows which transitions are possible,

and how common they are.

8.3 Finding the parameters of the phonotactic model

While the initialization provides an initial guess of the parameters for the phonotactic model,

the HMM must be trained in order to optimize the parameter values. The phonotactic model

is trained using Baum-Welch EM algorithm, and the same speech data as was used by the

k-means algorithm for the initialization. The Baum-Welch algorithm not only calculates

the transition probabilities, but also reestimates the probability distributions for the output

vector. It is an iterative process with two steps.

In the first step, the state probabilities are calculated given the observations and the

current emission probabilities for each state. This is done using a forward-backward algo-

rithm. The forward calculation gives the total probability of all paths to a state given the

observations, and the backward calculation gives the total probability of all paths from the

state to the stop given the observations. The forward and backward probabilities are then

multiplied and divided with the total probability of the observations.

Given the probability of being in a state at each time instant, and knowing the observed

output vector at that time, it is possible to reestimate the emission probabilities for each state.

In the same way the transition probabilities can be reestimated. This gives a new estimate

of the parameters of the HMM. However, the state probabilities were calculated using the

previous parameters and may now have changed. It is therefore necessary to repeat those

steps until the algorithm converges.

8.4 Modeling words

From the phonotactic HMM and a given speech utterance, it is possible to calculate the most

likely sequence of speech units that resulted in the given utterance. This is typically done

using the Viterbi algorithm. The Viterbi algorithm is related to the forward calculation in

Baum-Welch, but takes the maximum probability of a single path going to a state instead of

total probability of all paths.
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To create statistical models of the words acquired through the initial word learning, we

select the word candidate in the center of each cluster and present that to the phonotactic

HMM. Using the Viterbi algorithm we get the most likely sequence of speech units for the

given utterance. From this sequence we create a new single path HMM, where repeated

speech units within the sequence are collapsed into a single state. Transition probabilities

are taken from the phonotactic HMM, and are normalized so that they sum to unit.

8.5 Evaluating the model

To evaluate the statistical word models, we make use of the remaining word candidates within

each cluster of the initial word models. These are presented to each of the statistical word

models and for each word model we calculate the likelihood that the utterance was created

with the current model. The utterance is then associated with the statistical word model

given the highest likelihood. If this statistical model is indeed the one that represents the

cluster from which the utterance was drawn, this is counted as a correct classification. Doing

this for all word candidates in the initial word model we get the recognition rate for the

current statistical model.

The whole process is then iterated by increasing the number of states and creating new

statistical models for as long as the recognition-rate improves.

8.6 Experimental results

The multimodal word learning has been implemented in a humanoid robot. In a previous

experiment the robot was able to learn the names of a number of toys that the caregiver

placed in front of the robot Figure 7.4. In this experiment we were mainly interested in

testing the statistical model. The robot was therefore taught a number of additional words.

Like in the previous experiments only full sentences and no single words were given to the

robot. However, this time no images were used. Instead the utterances were labeled with

a number representing the object. The pattern matching resulted in 88 word candidates

that were divided into 8 different clusters by using hierarchical clustering and the mutual

information criterion.

For each cluster we then created a statistical model using the method described above.

This was done both with and without bootstrapping. With bootstrapping, the vowels learnt

by imitation were used as initial guesses for the positions of the speech units. Without

bootstrapping, random samples from the speech data was used for initializing the K-means

algorithm. We started with only 5 speech units and iteratively increased the number until 12
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speech units when there was no longer any improvement in the recognition rate. The results

are shown in Figure 8.4.
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Figure 8.4: Word recognition rates for different number of speech units with 8 target words.

The best result, 98% recognition rate, was obtained when using 10 speech units and

bootstrapping. The resulting word models are shown in Table 8.1. Note that some of the

speech units have a close to one-to-one relation with real phonemes, such as 1=a and 3=m.

A second, larger experiment was also performed where the robot listened to sentences

containing a total of 50 target words. In this case, only 38 clusters with at least five word

examples were found. A statistical model was created for each of these clusters. Again this

was done both with and without bootstrapping. For this case, the best results was obtained

for 17 speech units, Figure 8.5.

8.7 Conclusions

In the previous chapter we showed that it is possible to learn an initial word model without the

need for predefined linguistic knowledge, and it was argued that structures such as phonemes



8.7. CONCLUSIONS 101

Table 8.1: Statistical word models for 10 speech units with bootstrapping

word representation

siffy 5 7 5 7
pudde 9 6 10 5 8
docka 6 10 6 10 5 8
pappa 6 1 6 10 6 1
mamma 3 1 3 1
lampa 7 9 1 2 3 6 10 6 1
pippi 7 5 10 6 7
vovve 4 2 6 2 6 5 2 9
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Figure 8.5: Word recognition rates for different number of speech units with 38 target words.

instead emerge when needed in order to handle the growing vocabulary. In this chapter we

studied how this structure can emerge and developed a method for creating statistical models

of words and speech units.

While related methods often start by trying to cluster speech sounds into suitable units

before doing anything else, we take advantage of the fact that these structures actually may

emerge later in the development. By delaying the creation of speech units to a stage where

we have already been able to acquire an initial vocabulary we can use this vocabulary to
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evaluate how useful a set of speech units is for word learning. Another advantage by delaying

the creation of speech units is that it allows us to create a useful auditory-motor map, which

makes it possible to define the speech units in both auditory and articulatory space. An

additional benefit is that the speech units learned during the early imitation games can be

used to bootstrap the learning of the statistical models.

The experimental results show that this bootstrap has a positive effect on the word

recognition rates obtained with the statistical models.
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Discussion and future work

This thesis proposes a developmental and ecological approach to language acquisition in

humanoid robots, where embodiment and human interactions can relax the need for prepro-

grammed linguistic knowledge and labeled training data.

The work provides models for simulating the human ears, eyes, vocal tract, and memory

functions. On top of that, a cognitive model has been developed that provides the necessary

learning processes for acquiring words and underlying speech units. The cognitive model

makes use of motor learning and simultaneously learns how to produce and recognize speech.

The models have been implemented and tested in a humanoid robot. It has been shown that

the robot is able to acquire words and speech units directly through the interaction with a

caregiver, without the need for preprogrammed linguistic knowledge.

The speech units in this work are defined as target positions in motor space rather than

as auditory goals. While this approach is inspired by the Motor Theory of speech perception,

unlike the latter we do not consider speech to be special in that it needs any specific circuitry

in the brain to do this mapping. With the discovery of mirror neurons, similar mappings

has also been found between vision and motor space when recognizing different types of

grasps, and for grasping it has been shown that the map can be learnt through the use of

motor babbling and that different grasps can be learnt through imitation. In this work,

the same approach has therefore been used to learn the sound-motor map. However, it is

found that babbling alone is not sufficient to learn the audio-motor map. The main difficulty

is to overcome the large differences in the pronunciation between different speakers and in

particular differences between the sound produced by the robot and that of the caregiver.

In the case of grasping this difference is mainly restricted to a viewpoint transformation,

but in the case of speech researchers have not been able to find a direct transformation

that can resolve interspeaker differences. To compensate for these differences an additional

learning step is necessary in which the caregiver repeats utterances produced by the robot and

103
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allows the robot to generalize the map. Studies of the interactions between infants and their

caregivers have shown that this behavior is very common. One difficulty with this approach

is that the robot needs to be able to distinguish between imitations and non-imitations so

that only actual imitations are used to update the map. It has been shown in this work that

comparing prosodic features between the two utterances is sufficient for initial infant-adult

interactions. After learning the map, the robot has been able to learn target positions for

vowels and stop consonants by imitating the caregiver. Due to limitations in the vocal tract

model other speech sounds such as fricatives cannot be reproduced and can therefore not be

learnt using the current approach.

In parallel with the speech units, the robot is also able to acquire initial word models.

This is done by looking for recurring speech patterns and ground these in visual objects.

While the same multimodal approach can be found in earlier works on word learning, the

approach taken here is different in that it does not rely on any predefined phonemes. This

is an important difference since, according to the ecological approach, initial word learning

precedes the stage where infant starts to group speech sounds into language specific speech

units. Finding recurring pattern directly from the acoustic signal is very difficult, especially

in fluent speech, and the very reason why predefined phoneme models are typically used.

However, as the review of some of the typical characteristics found in IDS indicates, target

words are typically highlighted using utterance final position and focal stress. Infants are

very sensitive to these kinds of cues, and by taking advantage of the same cues the robot can

also facilitate the word acquisition task. The experiments with the humanoid robot clearly

show that it is possible to acquire a small vocabulary using the proposed method. While no

larger tests have been performed, the limitations of the suggested pattern matching approach

are well known in ASR, and the robot will eventually have to abandon this approach in favor

for statistical learning based on a limited number of speech units.

By creating an initial lexicon based on pattern matching, the robot can then use this

lexicon for training and evaluation of the statistical models. An iterative process is used

to find the optimal number of speech units for separating between the words in the initial

lexicon. Using the initial speech units, found during imitation, to initialize the statistical

model can improve the model by decreasing the risk of getting stuck at a local minimum.

To conclude, the presented work demonstrates the feasibility of the ecological and emer-

gent approach to language acquisition. It has been showed that the robot is able to acquire

both words and a set of underlying speech units without any ”innate” linguistic knowledge.

Further it provides a new and flexible way of language learning in humanoid robots. While

the final statistical representation of words and speech units are very similar to that of tradi-

tional ASR-systems, no hand labeled data is needed in order to train the model. In addition
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to the statistical model, words referring to objects are also represented by the object’s visual

appearance. Finally the mapping to motor space and use of interactions make it possible for

the robot to adapt to different speakers and continuously gain speaker invariance by updating

the audio-motor map.

9.1 Future work

There are several possible direction that can be followed in order to improve or extend the

current model.

One possible extension would be to try learning not only names of the objects, but also

words that describe events, object properties and relationships between objects, by repeating

the experiment done in [69]. This would demand a more advanced object detector that

include object size, color, direction, and velocity, and that is also able to detect more than

one object at a time.

The auditory sensor also needs to be improved with respect to noise filtering. Especially

it would be desired to model internal noises caused by the fan and the motors in the robot’s

head, and to be able to focus the attention to sound coming from a single direction. This

can be implemented by template subtraction and beamforming.

Finally, the speech production needs more attention. The current implementation simply

create a linear trajectory between target positions but may be made more natural by creating

a smoother path (i.e. coarticulate), and by adapting the prosody. It would also be desirable

to extend the current synthesizer with noise sources in order to produce fricative sounds.
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