
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 1, JANUARY 2015 339

Automatic 3-D Segmentation of Endocardial Border
of the Left Ventricle From Ultrasound Images

Carlos Santiago, Jacinto C. Nascimento, Member, IEEE, and Jorge S. Marques

Abstract—The segmentation of the left ventricle (LV) is an im-
portant task to assess the cardiac function in ultrasound images
of the heart. This paper presents a novel methodology for the
segmentation of the LV in three-dimensional (3-D) echocardio-
graphic images based on the probabilistic data association filter
(PDAF). The proposed methodology begins by initializing a 3-D
deformable model either semiautomatically, with user input, or
automatically, and it comprises the following feature hierarchical
approach: 1) edge detection in the vicinity of the surface (low-
level features); 2) edge grouping to obtain potential LV surface
patches (mid-level features); and 3) patch filtering using a shape-
PDAF framework (high-level features). This method provides good
performance accuracy in 20 echocardiographic volumes, and com-
pares favorably with the state-of-the-art segmentation methodolo-
gies proposed in the recent literature.

Index Terms—3-D echocardiography, deformable models, image
segmentation, left ventricle (LV), robust estimation.

I. INTRODUCTION

THE automatic segmentation of the LV endocardium from
ultrasound (US) images is a crucial step to characterize

heart functionality, e.g., ejection fraction. In a clinical setup,
there are several advantages involved in solving this problem in
echocardiography. This includes the increase of patient through-
put and the reduction of interuser variability in the LV delin-
eation procedure. Although other imaging techniques, such as
MRI and CT, provide images with better spatial resolution,
echocardiography is still one of the most preferred modalities
due to its temporal resolution, versatility, and low cost [1]. How-
ever, automatic segmentation in echocardiography is not a sim-
ple task since it raises several challenges. First, the US images
may contain more than one anatomical structure, meaning that
it is necessary to correctly identify the region of interest (i.e.,
initialization procedure). Second, the borders of those structures
may not always be present and they are often difficult to locate
due to misleading edges and background noise. This problem
is particularly accentuated in echocardiographic images, char-
acterized by low signal-to-noise ratio, weak echoes, scattering,
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echo dropouts, and presence of speckle (i.e., cluttered back-
ground and outliers).

Deformable models have been one of the most promising ap-
proaches to the segmentation in echocardiographic images [2],
[3]. However, they still face two major issues. First, the ini-
tialization has a significant influence in the segmentation. This
means that different initializations may provide different final
shape estimates, introducing user-dependent bias. An automatic
initialization solves this problem by guaranteeing that, for a spe-
cific volume, the final segmentations are consistent. Second, the
presence of clutter hampers the accuracy of the segmentations.
Most approaches do not have the ability to identify which image
features (e.g., edge points) actually belong to the object of in-
terest and which belong to the background noise or neighboring
structures. This may cause the final segmentation to be poorer
since erroneous edges have a negative impact in the adaptation
of the deformable model. These problems have been the subject
of intense research in the past decades and are the main concern
of this paper.

This paper proposes a new algorithm based on deformable
models, tailored to perform the segmentation of the LV in three-
dimensional (3-D) echocardiographic images targeted to ac-
count for the difficulties mentioned previously, i.e., initialization
and presence of outliers and cluttered background. To achieve
this goal, we propose 1) different initialization procedures along
with 2) a probabilistic data association filter (PDAF) allowing
for the robustness against the presence of clutter.

II. RELATED WORK

Since the work by Blake et al. [4], the sequential state esti-
mation framework has proved useful in a wide range of appli-
cations. The main idea is to use the Kalman filter, combining
state predictions, and image measurements, to track B-spline
contours deformed by linear transformations lying in a shape
space (model subspace). The LV segmentation from echocar-
diographic images is one of such examples that uses the above
framework. For instance, in [5], [6], the proposed segmentation
is performed in a sequential state-estimation where the extended
Kalman filter is used to recursively update global pose and local
shape parameters. In the same spirit [7], the state estimation
is combined with an active shape model with the predefined
deformation modes. This approach is also applied in [8] in the
context of two-dimensional (2D) echocardiography. In a similar
line of research, state-space tracking is formulated in a informa-
tion fusion problem [9]. Also, a state-based approach for cardiac
deformation analysis has been proposed in [10]. In this paper,
we propose a novel algorithm to perform the 3-D segmenta-
tion of the LV from echocardiographic volumes. The proposed
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methodology relies on the use of state estimation whose update
is accomplished via PDAF that has its roots in [11].

There exists several alternatives to perform segmenta-
tion/tracking with multiple observations. Although, Kalman fil-
ter provides an ideal solution, this is only valid under the Gaus-
sian assumption, which is not the present case since the US is not
an unimodal image (e.g., presence of speckle). Nearest neigh-
bor filter, is another approach for localizing the target in clutter
environments. In this approach, the closest observation is used
to update the state. However, if the selected observation, that
is closest to the predicted measurement is wrong, this method
does not provide acceptable results. An alternative is to deal with
every observations. A possible strategy is to track-and-split in-
dividually every possible hypothesis among observations. The
disadvantage is that, this can lead to an expensive computational
effort if one has relatively large number of observations. Other
alternatives are the Bayesian class of approaches, e.g., optimal
Bayesian filter that computes the association probabilities for
each sequence of observations. Suboptimal version are possible
the so-called “N scan back”, meaning that the observations of
the N latest images are taken into account Again, this approach
may have excessive computing in US images. The best com-
promise is a suboptimal strategy—PDAF, that only accounts for
the latest set of observations, i.e., it computes the association
probabilities for the current image observations (i.e., “No scan
back”). From the aforementioned reasons, PDAF is a suitable
choice for the purpose of this paper, since it can provide robust
segmentation in the presence of clutter at low computational
cost.

Another concern of this paper is the initialization problem.
Several strategies can be found in the literature concerning this
aspect. For instance, the gradient vector flow technique [12] that
has been widely used, including in the LV segmentation problem
[13], [14]. Alternatively, in [15], it is proposed to combine a
deformable model with an image registration scheme consisting
of a mutual information analysis between the echocardiographic
volume and a presegmented image (template) of the LV. Another
common approach is to statistically determine the most probable
location of the LV based on a learning procedure, e.g., [16]–[20].
Other approaches have also been proposed. In [21], the centers of
divergence concept is suggested to solve the initialization issue.
On the other hand, Tauber et al. [22] proposes an automatic
initialization algorithm that consists in analyzing the 2-D short
axis (SA) planes of the volume. To the best of our knowledge,
there have not been other reports of a 3-D (semi) automatic LV
segmentation concerning the use of the proposed framework.

III. PROPOSED METHODOLOGY AND CONTRIBUTIONS

This paper proposes a methodology that is able to deal with
both the initialization and the presence of clutter issues. Fig. 1
illustrates an overview of our approach. It includes three main
blocks: 1) the initialization of the surface model; 2) the extrac-
tion of the image features, in a multistep process that filters edge
points based on their reliability; and 3) the adaptation of the sur-
face towards the LV border. Each of these steps is explained in
detail in the following sections.

Fig. 1. Block diagram of the segmentation system.

Fig. 2. Surface models used: (a) a simplex mesh (b) a conic-shaped model.
Directional search along directions orthogonal to the surface at each vertex of
the surface model (c).

Regarding our previous publication [23], this paper provides
the following new contributions:

1) Two different initialization approaches are compared: 1)
a user-dependent initialization based on the space carving
algorithm [24] and 2) an automatic initialization algorithm
inspired in the method proposed by [22];

2) In order to mitigate the influence of outliers, the proposed
method is inspired in the PDAF framework proposed in
[11]. In this paper, we extend the concept of the shape
probabilistic data association to 3-D data;

3) We compare the LV segmentations using two different 3-D
surface models (conic and simplex mesh models);

4) We extend the experimental evaluation for 20 US volumes
of the LV

5) We also compare the quality of the segmentations using
several denoising techniques as a preprocessing step.

The paper is organized as follows. Section IV describes the
3-D surface models used to segment the LV. Section V ex-
plains the feature extraction steps, from low-level to high-level.
Section VII describes the data set used to test the proposed
method, as well as the evaluation methodology. Section VIII-B
shows the results from all the tests and segmentations made to
assess the method. Finally, Section IX concludes the paper with
final remarks.

IV. SURFACE MODELS AND INITIALIZATION

In this section, we describe the two 3-D surface models used
in the proposed segmentation system. The first model used is a
3-D simplex mesh [25], which consists of a set of N vertices
x = [xv1 , . . . , xvN

]T [see Fig. 2(a)]. The simplex mesh has a
neighborhood system that imposes that each vertex xvi

∈ R3

has exactly three neighboring vertices, which form a triangle
that defines a tangent plane to the surface at xvi

. This enables
the computation of the normal to the surface and the search line
used in the detection of low-level features [see Fig. 2(c)].

As for the second model, we used a conic-shaped de-
formable surface that consists of a set of N ′ vertices x =[
xv1 , . . . , xvN ′

]T
that form a square grid shape around the LV
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and finishes with a triangulation with the apex point xvN ′ [see
Fig. 2(b)]. We designed this model so that each equatorial set
of vertices stay in the SA plane (orthogonal to the left ventric-
ular long axis). Consequently, the feature search is performed
within the SA plane and the adaptation of the model is strictly
orthogonal to the long axis (LA). Therefore, these two surface
models constitute two different approaches: a flexible simplex
mesh without any node restrictions (apart from surface smooth-
ness, as will be mentioned ahead) and a model with additional
constrains since the nodes are organized along parallel planes.

In both models, the update equation follows the one originally
defined by Delingette in [26], where the new position of the
ith vertex at k iteration xvi

(k) is a sum of two forces plus a
momentum term. Formally,

xvi
(k) = xvi

(k − 1) + c1Mvi
(k) + c2F

int
vi

(k) + c3F
ext
vi

(k)
(1)

where Mvi
(k) = xvi

(k − 1) − xvi
(k − 2) is the momentum

term, used to improve the speed of the adaptation, F int
vi

(k),
and F ext

vi
(k) are the internal and external forces, respectively,

and c1 , c2 , and c3 are constants.
The external force F ext

vi
(k), is responsible for pulling each

vertex towards the desired position x̂vi
(k) (which is the high-

level feature). This is accomplished by simply computing the
desired displacement

F ext
vi

(k) = x̂vi
(k) − xvi

(k − 1) (2)

where xvi
(k − 1) is the vertex position at the previous time step

and x̂vi
(k) is the corresponding estimated location of the LV

boundary point. The computation of the high-level features x̂(k)
will be described in Section V-C.

The internal force F int
vi

(k), on the other hand, is responsible
for keeping the structure of the surface smooth. The computa-
tion of the internal force can be separated into two orthogonal
components: a force Fn

vi
orthogonal to the surface at xvi

and a
tangential force F t

vi
. The way these two components are defined

is different and depend on the surface model being used.
Regarding the simplex mesh, the orthogonal force Fn

vi
adjusts

the vertex’s height to the tangent plane formed by the three
neighbors (related to the curvature of the surface at xvi

). The
desired height is defined by the average height of the second
degree neighborhood, i.e., of the surrounding nine vertices. This
means that the surface tends to have a uniform curvature (see
[25] for a detailed description). The tangential force F t

vi
attracts

each vertex towards the center of the triangle formed by the
neighbors, thus ensuring that the vertices are evenly spaced
between each other.

In the conic-shaped model, each Fn
vi

acts orthogonally to the
curve formed by the set of vertices located in that SA plane. It
adjusts the distance of each vertex xvi

to the center of the curve
(radius) based on the average radius of all the vertices in that
plane and in the adjacent planes (above and below planes). This
means the model will tend to keep a similar radius throughout
the SA planes, thus guaranteeing that the surface is smooth. The
tangential force, F t

vi
, on the other hand, keeps xvi

equally spaced
to the two neighboring vertices in that plane, in a tangential

Fig. 3. Automatic initialization procedure. (a) Template used in the detection
of the LV center and radius; (b) selection of the best patch location and size;
(c) coronal view of the detected LV centers and corresponding radii (size of the
red line); (d) selection of the slices that embrace the LV; (e) computation of the
LA; (f) correction of the centers and corresponding radii.

displacement to the curve. This helps avoid overlapping vertices
throughout the adaptation.

A. Initialization

Both deformable models will be subjected to two different
initialization methods: 1) a manual initialization that requires a
user input and 2) an automatic initialization that does not need
user intervention. In both cases, the initialization process has
three steps: 1) identifying the location of the LV center in each
SA plane of the image, 2) computing the left ventricular LA, and
3) creating the surface model using the information obtained in
1) and 2).

In the first method, we use an initialization scheme that makes
use of the space carving algorithm [24] (see [23] for details).
The second initialization is a contribution of this paper, and
works as follows. The algorithm produces an initial LV boundary
by searching for the LV cross-section in each axial plane. We
assume that the LV has approximately a circular shape in these
slices. This assumption has previously been proved to lead to
good initializations in [22]. The proposed approach follows three
main steps:

1) Detection of the LV center and radius. The axial planes
(volume slices) are sequentially analyzed from apex to
base. For each zth slice of the LV volume, we compute
the convolution between its intensity [see Fig. 3(b)] and a
template [see Fig. 3(a)] varying its center and radius. For
each slice, we keep highest convolution score. In the next
z + 1th slice, a sliding window operation is also performed
but only in the vicinity of the previous best center cz and
close to the previous radius rz . The output of this process
is illustrated in Fig. 3(c).

From Fig. 3(c), we see that slices located above and
below the LV are also obtained and should be discarded.
To determine which axial slices actually embrace the LV
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volume, we define a profile of a volume as the signal
with the best scores along the slices. Repeating this pro-
cess for N volumes, we obtain N profiles. To determine
which slices embrace the LV, we average all volume pro-
files, aligned so that the first value corresponds to the
first apex slice. Finally, we search for the set of slices
that maximize the correlation between their profile and
the template. The output of this process is illustrated in
Fig. 3 (d).

2) 3D orientation of the LV surface model. This step aims to
correct the positions of the centers [see the irregular yel-
low lines in the images shown in Fig. 3(c,d)]. In both the
manual and automatic initialization, the selected centers
are used to determine the left ventricular LA by perform-
ing a 3-D linear regression. Fig. 3(e) shows the centers
before (yellow color) and after (cyan color) the regres-
sion procedure. With the LA, the new centers are sampled
evenly spaced from the base to the apex. Fig. 3(f) shows
an example of the final centers and radii of the automatic
initialization procedure.

3) Creation of the surface model. In both models, several
points are sampled in each SA plane (orthogonal do the
LA) in a circle with the center and radius computed in
the previous step. Regarding the conic-shaped model, the
sampled points match the model vertices and the neigh-
borhood system forms quadrilateral polygons. An apex
point, located along the LA, is added to the model which
forms triangles with the vertices from the slice closest to
the apex (see Fig. 2). On the other hand, the vertices of the
simplex mesh are obtained from the centers of the trian-
gles formed by the sampled points. In this case, a base and
an apex point are added. The number of sampled points
per slice in the simplex mesh is half of the conic-shaped
model so that the final number of model points is similar.
In all the tests performed, the number of sample points
in the simplex mesh case was set to 10 (20 in the conic-
shaped model), resulting in a total number of 20×#slices
vertices plus two vertices in the base and apex (one vertex
in the case of the other model).

V. FEATURE EXTRACTION

This section addresses how feature detection can be per-
formed under noisy images. The proposed feature extraction
block includes three steps that aim to produce more reliable
LV boundary points. The first step consists of the detection of
3-D edge points in the vicinity of the surface model, which we
denote as low-level features. The second step introduces the no-
tion of mid-level features, which are surface patches formed by
grouping low-level features. These patches correspond to edge
surface portions that describe the boundary of some structure
in the volume. Finally, the third step consists of filtering the
mid-level patches based on how reliable they are. It makes use
of the data association [11] concept to produce the final set of
points—denoted as high-level features, that indicate the esti-
mated location of the LV boundary. These steps are described
in the following subsections.

Fig. 4. Mid-level features detection (five patch detected). (a) Shows all the
detected low-level features (red dots). (b) Shows the corresponding patches:
each color represents a different patch and the edges link neighboring low-level
features from the same patch.

A. Edge Point Detection—Low-level Features

Edge point detection is performed by directional search along
lines orthogonal to the surface. Edges are detected using the
matched filter approach described (we refer to the reader Chap.
5 of [4] for a comprehensive review).

Even though the matched filter is the optimal filter for de-
tecting known shapes in noisy signals [26], in this case, it often
leads to the detection of more than one edge point, mainly due to
the background noise and to the existence of other cardiac struc-
tures in the vicinity of the LV. Fig. 4(a) shows the result of the
low-level feature extraction in an echocardiographic volume.

Since it is impossible to know which of the detected features
actually belong to the LV border and which are outliers, one
should consider all possible combinations of valid and invalid
features (interpretations). However, the number of interpreta-
tions grows exponentially, which means that this approach is not
feasible. Linking neighboring low-level features into patches
(surface portions), which we call mid-level features, signifi-
cantly decreases the number of interpretations.

B. Patch Formation—Mid-level Features

Defining which low-level features belong to a specific patch
can be viewed as a labeling problem, similar to the one described
in [27]. This means that the label assigned to an edge point
defines the patch it belongs to.

This labeling problem is solved using two main assumptions:
1) edge points associated to a specific vertex (i.e., found along
the same search line) must belong to different patches, since it
is unlikely that a single border has two consecutive edges; 2)
two edge points associated to two neighboring vertices are more
likely to belong to the same patch if they are close to each other,
meaning that patches should have spatial continuity.

Based on the two aforementioned premises, we defined an
energy function E associated to the label configuration Λ (com-
plete set of labels assigned to each feature) that is minimum
when these two criteria are satisfied. Let yvi ,w be the wth edge
point associated to vertex vi and yvj ,q be the qth edge point
associated to vertex vj . If yvi ,w and yvj ,q have the same label
(belong to the same patch) and are detected at neighboring sites
(vi and vj are neighbors), we define a link l between them (see
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Fig. 4). The energy of a label configuration Λ is then

E(Λ) =
∑

l

e(l). (3)

where e(l) denotes the energy of a single link l and the sum
is computed over all links in Λ. The energy function e can
be divided into three terms. The first term, e1 , prevents links
between features too far apart, therefore promoting patches with
spatial continuity:

e1(l) =

{
∞ if ‖yvi ,w − yvj ,q‖ ≥ tl

0 otherwise
(4)

where tl is a threshold (maximum allowed distance between
neighboring patch features). The second term, e2 , rejects label
repetitions along the same search line

e2(l) =

⎧
⎪⎨

⎪⎩

∞ if the label has already been assigned to an

edge point associated with vi or vj

0 otherwise.
(5)

The third term, e3 , promotes assigning neighboring features the
same label if they verify the mutual favorite pairing criterion
(MFP) [28]

e3(l) =

{
−1 if yvi ,w and yvj ,q verify MFP

1 otherwise.
(6)

This criterion imposes that the same label should be assigned to
yvi ,w and simultaneously yvj ,q if 1) yvj ,q is closer to yvi ,w than
any other feature associated with vj , and 2) yvi ,w is closer to
yvj ,q than any other feature associated with vi .

To achieve the minimum energy configuration, we propose a
labeling algorithm that uses a label propagation scheme (see [23]
for detailed description of the labeling process).

Fig. 4(b) shows the output of the labeling process based on
the detected edge points, shown in Fig. 4(a).

C. Data Association—High-level Features

The final step of the feature extraction block consists in es-
timating the LV boundary based on the detected patches. Since
undesired patches (outliers and not belonging to the LV) may be
detected, we use a robust shape estimation approach that is able
to deal with outliers. This method is inspired in data association
filtering [11], [29].

In each iteration k of the model adaptation, we define a set
of possible patch interpretations Ik = {I0 k , . . . , Imk k}, where
a patch interpretation Ii k is a binary sequence of patch labels,
classifying each patch as valid (label “1”) or invalid (label “0”).
Then, each interpretation receives a confidence degree, the asso-
ciation probability αi k , which depends on the size and position
of the patches with respect to the surface model. The computa-
tion of the association probabilities is explained further.

1) State Model: The model assumes that the LV boundary
is described by a set of 3-D points xk = [xv1 k , . . . , xvN k ]T

of dimension N × 3. Since this is a static problem, (we only
address the 3-D segmentation of the LV, although the extension

to 3D + T is straightforward), the motion model is described by

xk = xk−1 + wk (7)

where xk is the state vector (mesh vertices) at the kth iteration
of the estimation process and wk ∼ N (0, Q) is white noise with
Gaussian distribution.

The observation model, on the other hand, depends on the
patch interpretation, i.e., it depends on which observations are
considered as valid. For an interpretation Ii k , the observation
model is defined as

yi k = Ci kxk + vi k (8)

where Ci k is the observation matrix associated with the ith inter-
pretation Ii k and vi k ∼ N (0, Ri) is white noise with Gaussian
distribution. Ci k is an Mi × N matrix obtained from the identity
matrix by removing the rows associated to invalid features. Thus,
the observation matrix Ci k assigns the set of points from xk that
originated the set of observations yi k = [y1 k , . . . , yMi k

]T , with
dimension Mi × 3, that are considered valid according to Ii k .

2) Data Association: The estimation of the state vector x̂k |k
involves the computation of the expected value of the pos-
terior probability density function p(xk | Lk ), where Lk =
{L1 , . . . , Lk} is the cumulative set of detected patches from iter-
ation 1 to k. The PDAF formulation performs the decomposition
of the estimation with respect to the latest set of measurements
(i.e., no scan back). This means that, the probability of the state
vector given the past observations Lk−1 can be approximately
defined (see [11]) by a Gaussian distribution

P (xk | Lk−1) = N
[
xk ; x̂k |k−1 , Pk |k−1

]
(9)

where x̂k |k−1 and Pk |k−1 are the predicted mean vector and co-
variance matrix, respectively. Under this assumption, the con-
ditional mean of the state at iteration k is

x̂k |k = E[xk | Lk ] =
mk∑

i=0

p{Ii k |Lk}E[xk |Ii k , Lk ]

=
mk∑

i=0

αi k |k x̂i k |k (10)

where αi k |k = p{Ii k |Lk} is the probability of the interpretation
Ii(k), also called association probability, and x̂i k |k is the state
vector estimate conditioned on Ii(k). Each x̂i k |k is updated by
the Kalman filtering

x̂i k |k = x̂k |k−1 + Ki k νi k , i = 1, . . . ,mk (11)

where Ki k and νi k are the Kalman gain and the innovation,
respectively, associated with the interpretation Ii k . Replacing
(11) in (10), we obtain

x̂k |k = x̂k |k−1 +
mk∑

i=1

αi kKi kνi k . (12)

A similar analysis can be performed to obtain the covariance
estimate (see [11], [30] for details).

Equation (12) means that the state estimate x̂k |k is a weighted-
sum of the estimates according to each interpretation. The
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Fig. 5. Data generation model.

weight each interpretation receives depends on the correspond-
ing association probabilities αi k . The following subsection de-
scribes the computation of these weights.

3) Association Probabilities: The association probabilities
depend on the data model that generated the detected patches.
We assume that the data generation model can be described
as shown in Fig. 5, and, consequently, that it depends on the
variables listed below.

As we will often encounter terms involving the dependence
of k, we will omit this dependence so that the equations can
be more compactly and clearly described. The variables are as
follows:

1) n—number of patches;
2) L = {L1 , . . . , Ln}—vector of the detected patches,

where Lj = {yj
1 , . . . , y

j
Aj

} includes all the low-level fea-
tures that belong to that patch;

3) A = {A1 , . . . , An}—Aj being the area of the jth patch,
i.e., the number of low-level features that belong to the jth
patch;

4) I = {I1 , . . . , Im}—set of interpretations, where Ii =
{I1

i , . . . , In
i } is a binary sequence that considers the jth

patch valid if Ij
i = 1 and invalid if Ij

i = 0, and m = 2n is
the number of data interpretations.1

The generative model of the data is characterized by the joint
distribution P (L, Ii, A, n | Lk−1). This probability can be fac-
torized as follows

P (L, Ii, A, n |Lk−1)=P (Ii |L,A, n, Lk−1)P (L,A, n |Lk−1)
(13)

where the unknown term is the association probability αi =
P (Ii | L,A, n, Lk−1) that must be computed. Using the Bayes’
rule, this can be written as

αi ∝ P (L|Ii, A, n, Lk−1)P (Ii |A,n, Lk−1) (14)

the term P (L | Ii, A, n, Lk−1) is the likelihood of the set of
patches L according to Ii , and P (Ii | A,n, Lk−1) is the prior
probability of the interpretation Ii . In the aforementioned data
model, it will be assumed that high association probabilities
are assigned to interpretations containing valid patches that are:
1) large and 2) located close to the surface model. The two terms
in (14) are defined as follows:

Likelihood: The likelihood term determines the probability of
the patches being correct based on their distance to the surface
model. We assume that if a patch is close to the surface, it is
more likely that it belongs to the LV boundary, whereas if it is
farther away from the surface, it probably belongs to another
anatomical structure.

1Recall that, for a large number of patches, the cardinality |I | is also large,
and thus, m grows exponentially with the number of patches. However, this does
not happen in practice, since interpretations containing overlapped valid patches
(labeled “1”) are discarded, so that only a smaller subset of interpretations
m 	 2n needs to be explicitly examined.

Assuming that each patch Lj is independently generated, the
likelihood can be expressed as the product of each individual
probability

P (L | Ii, A, n, Lk−1) =
n∏

j=1

p(Lj | Ii, A, n, Lk−1). (15)

We define the probability p(Lj | Ii, A, n, Lk−1) for two dif-
ferent cases, depending on whether Lj is considered valid or
invalid according to Ii . Following [11], we assign a Gaussian
distribution, N (d; 0, σ2) (d defined below), if Lj is considered
as valid; an uniform distribution (with the same length as the
search line V ), otherwise. Formally,

p(Lj | Ii, A, n, Lk−1) =

{
βN (d; 0, σ2) if Lj (k) is valid

V −1 otherwise
(16)

where β is a normalization constant. The parameter d is a mea-
sure of the average distance between the low-level features of
the jth patch, {yj

1 , . . . , y
j
Aj

}, and the corresponding vertices of

the surface model, {xj
1 , . . . , x

j
Aj

} and defined asd = ‖ē‖, where

ē =
1

Aj

Aj∑

q=1

(
xj

q − yj
q ). (17)

Prior: The prior probability of an interpretation Ii determines
the probability of Ii being correct based on the size of its valid
patches. The higher the area of valid patches, the higher its prior
probability. Regarding invalid patches, these should have the
opposite effect: if patches with high areas are labeled as invalid
in Ii , then it should receive a small prior probability.

Similarly to the likelihood case, we assume that the prior
factorizes as follows

P (Ii | A,n, Lk−1) =
n∏

j=1

p(Ij
i | A,n, Lk−1) (18)

where p(Ij
i | A,n, Lk−1) is the probability of the label assigned

to patch j in interpretation i. The following definition satisfies
previous statements

p(Ij
i = 1 | A,n, Lk−1) = a log(Aj + 1) + b = Pj

p(Ij
i = 0 | A,n, Lk−1) = 1 − Pj (19)

where:

a =
PB − PA

log(Amax + 1)
, b = PA (20)

where PA , PB are constants, Amax is the total number of vertices
in the surface model, and Aj is the area of the patch Lj (number
of features it comprises).

Combining (19) with (18) yields

p(Ii | A,n, Lk−1) =
∏

j :I j
i =1

Pj

∏

j :I j
i =0

1 − Pj . (21)

In practice, small patches (such that Aj < 10%Amax ) are dis-
carded to further reduce the number of possible interpretations
and the computational burden of the algorithm.



SANTIAGO et al.: AUTOMATIC 3-D SEGMENTATION OF ENDOCARDIAL BORDER OF THE LEFT VENTRICLE FROM ULTRASOUND IMAGES 345

Fig. 6. 2-D shape segmentation example. (a) initial contour guess; (b) four
detected segments; shape estimate provided by (c) cyan (valid) segment; (d) yel-
low (valid) segment; (e) magenta (invalid) segment; (f) green (invalid) segment;
(g) final PDAF segmentation; (h) data interpretations and association
probabilities.

VI. ILLUSTRATION OF THE PROPOSAL

Before testifying the usefulness of the approach in the 3-D
experiments, this section illustrates, through a 2-D example,2

the main characteristics of the PDAF presented in Section V-C.
This aims to highlight why probabilistic data association, as a
bottom-up approach, is tailored and suited to provide the final
boundary segmentation.

Suppose we have an initial guess [see yellow dots in Fig. 6(a)],
from which we intend to segment the endocardium. So, a contour
expansion is expected. From the orthogonal lines (although not
shown) radiating from these samples points, several transitions
are detected in the image, and organized in contour-segments
[equivalent to the patches in 3D—see Fig. 6(b)]. In this case, four
segments (S = 4) are detected: two reliable or true segments
(cyan and yellow colors), that belong to the LV boundary; and
two outlier segments (magenta and green colors) that do not
belong to the LV boundary. The goal is to perform a correct
segmentation in the presence of unreliable structures that may
jeopardize the location of the LV.

The PDAF framework starts by considering all the combi-
nations of the segments, i.e., the data interpretations. This is
accomplished by giving two possible labels for each segment
(i.e., label “1” and “0” if the segment is considered as true
or false, respectively) and considering all possible binary label
combinations within the segments. In this case, from 16 (2S )
possible data interpretations, only nine are considered for data

2A 2-D example has been selected for the clearness of the theoretical
exposition.

association.3 The table in Fig. 6 shows which interpretations are
considered.

To better illustrate how important is the weighting (achieved
through the computation of the association probabilities) of the
segments, we start by illustrating the influence of each segment
individually, by considering it as being reliable (i.e., unit as-
sociation probability). Fig. 6(c) and (d) illustrate the contour
segmentation (in red) when the segments S1 and S2 are con-
sidered individually. We can see that the segmentation is not
well represented in the opposite side of the segment, since the
model is attracted by the only available data. Now, observing
the singly influence of the invalid segments (S3 and S4), we see
again the “miopia” of the model, since it collapses, scaling and
translating towards the available segment.4 Fig. 6(g) shows the
final segmentation using PDAF. It shows that associating the
segments with different weights for the data interpretations is
the key, since the contour model model is “looking” for the best
coherence among segments to form the LV contour. The table
in Fig. 6 shows the weights of the nine interpretations consid-
ered, and it is possible to conclude that I12 (α ≈ 0.84) is the
interpretation that influences the most the final shape estimates,
correctly neglecting the presence of the invalid segments S3 and
S4 .

VII. DATA ANALYSIS

The experimental data used to evaluate the proposed algo-
rithm consists of 20 echocardiographic volumes with 240 ×
208 × 256 voxels.5 The data was acquired with a resolution in
x, y, and z of 0.834, 0.822, and 0.726 mm, respectively.

The annotations for the volumes were given by an expert
and consist of 2-D manual segmentations of the LV in four
equally spaced slices for each volume. The expert performed
the manual segmentations twice in different days, enabling us
to determine the intrauser variability. The expert contours were
also used to evaluate the accuracy of the computer segmentation
by comparing both, as will be explained in the next subsection.

Furthermore, several preprocessing techniques were tested to
improve the segmentation results, including:

1) A 2-D mask median filter (2DMF)
2) Total variation (TV) proposed in [31],
3) Squeeze Box filter (SBF) proposed in [32],
4) A 3-D mask median filter (3DMF)
The filters 1), 2), and 3) are 2-D and were applied to each SA

slice. Section VIII-B shows the performance of the algorithm
using these techniques.

To perform a quantitative evaluation, we used two similarity
metrics that are common in the literature for contour compari-
son. More specifically, we used the Dice similarity coefficient

3Recall the assumption of the PDAF [11] is that only one measurement
is considered as being target originated. This prevents overlapping segments
(or patches) to be considered simultaneously as valid. Thus, interpretations
containing overlapped valid segments are discarded, as already discussed in
Section V-C3.

4In this experiment, the LV contour “lives” in the Euclidean similarities space,
i.e., translation, rotation, and isotropic scale.

5All the LV volumes presented in this paper were acquired at Hospital Uni-
versitario Rı́o Hortega (Valladolid).
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Fig. 7. Slices extracted from four different echocardiographic volumes showing: (in red) the cross-section of the segmentation using the simplex mesh and the
TV filter; and (in green) the gold-standard.

(DSC) [33] and average distance (AV) between the estimated
contour and the ground truth.

VIII. EXPERIMENTAL EVALUATION

In this section, we first discuss the influence of the various
algorithm parameters. Then, we present the results and discuss
over the qualitative and quantitative evaluation of the obtained
segmentations. We compare our results against other state of
the art methods and against the intrauser variability. We also
compare the segmentations obtained with and without the S-
PDAF step. Finally, we assess the robustness of the algorithm
to the initialization.

A. Parameter Selection

The set of parameters included in the proposed algorithm were
all tuned by performing several tests and selecting the values
that led to the best results. The set of parameters tuned were the
following: c1 , c2 and c3 for (1), and tl for (4). Different values
were tested for each parameter, including: c1 , c2 , c3 ∈ [0, 1] and
tl ∈ [5, 17] mm.

Regarding the parameters in (1), our tests showed that higher
values of c1 , c2 and c3 occasionally led to instability issues
in the surface model. More specifically, as c1 → 1 (associated
with the momentum term), some vertices experienced oscilla-
tions issues before converging to the final position, particularly
if c2 was also high. However, this behavior only occurred (no-
ticeably) for c1 > 0.5. The improvement in convergence speed
was also negligible, so higher values were discarded. As for
c3 (associated with the external force), high values also caused
some occasional instabilities in the surface model, mainly due
to the fact that abrupt deformations of the surface can cause
it to lose its structure. Consequently, the normal to the sur-
face at some vertices would be inconsistent, eventually leading
to incorrect segmentations. Apart from these exceptions, all
values led to good segmentations. The best results were ob-
tained with c1 = 0.1, c2 = 0.3, c3 = 0.2 for the simplex mesh
and c1 = 0.1, c2 = 0.2, c3 = 0.3 for the conic model. These
were the values used for the remainder tests.

As for tl , this parameter depends on the number of vertices
used in the surface model (since it determines the maximum
distance between neighbor low-level features of the same patch).
For the case of 20 vertices per slice, experiments showed that
tl = 10 mm was the value that led to better overall results.

Summarizing, the set of parameters selected in the following
tests were: c1 = 0.1, c2 = 0.3, c3 = 0.2 for the simplex mesh;
c1 = 0.1, c2 = 0.2, c3 = 0.3 for the conic model; and tl = 10 in

TABLE I
BEST PERFORMANCE FOR: (A) EACH SURFACE MODEL, μ(σ), ACROSS ALL

FILTERS AND INITIALIZATION TYPES; EACH (B) EACH INITIALIZATION TYPE,
μ(σ), ACROSS ALL MODELS AND FILTERS; AND (C) EACH FILTER, μ(σ),

ACROSS ALL MODELS AND INITIALIZATION TYPES

both cases. The iterative process is stopped when no significant
changes are made to the model.

Finally, the parameters PA and PB , used in the S-PDAF
in (20), also need to be set. PA defines the minimum prior
probability of a valid patch j (when Aj = 0), and 1 − PB de-
fines the minimum prior probability of an invalid patch (when
Aj = Amax ). The main purpose of these parameters is to avoid
assigning a prior probability of 0 to a patch labeled as valid (or
invalid), because this would lead to some interpretations having
an association probability of 0. They also define the area for
which a patch j has the same prior probability when considered
valid and invalid. We chose PA = 1 − PB so that the equal-
ity happens half way through Amax (in logarithmic scale). We
chose PA = 0.05 and PB = 0.95 to have a wider range in prior
probability values.

B. Segmentation Results

We applied the segmentation algorithm to the 20 volumes
described in Section VII. Some examples can be seen in Fig. 7.

For the quantitative results, three comparisons were interest-
ing to evaluate: 1) which deformable model had the best overall
performance; 2) which initialization performed better; and 3)
which filter led to the best results and how much the accuracy
of the segmentation improved. To help the comparison between
each of them, Table Isummarizes the best mean performance for
each comparison.

Table I (a) shows that the best mean performance of the sim-
plex mesh led to more accurate results, achieving 9% less error
than the conic model (with the dAV metric). Comparing the
initialization procedures, Table I (b) shows that the automatic
approach led to overall best performances. The difference be-
tween the two was also of approximately 9%. Note that the
standard deviation of dAV also decreased in the automatic ap-
proach. As for the different preprocessing techniques, all of them
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TABLE II
SUMMARY OF STATE OF THE ART REPORTED RESULTS FOR THE AVERAGE POINT-TO-MESH DISTANCE BETWEEN SEGMENTATION

AND EXPERT CONTOURS (IN MILLIMETERS)

improved the accuracy of the segmentation. Comparing the best
mean values of dAV in Table I (c), we see that the filters 2DMF,
TV, SBF, 3DMF, led to an improvement of approximately: 8%,
14%, 11%, and 5%, respectively. The TV filter also achieved a
smaller variance in the segmentation accuracy.

The best overall result was obtained in an automatic approach,
with the simplex mesh and the TV filter, achieving the values
dAV = 2.26 ± 0.30 mm and dDSC = 0.92 ± 0.02.

Table II shows a comparison between this result and other
state of the art segmentation methods. The proposed approach
achieved similar results to the other methods. Besides the meth-
ods in Table II, our approach also compares favorably with other
recent works. For instance, Zheng et al. [34] report an average
Dice coefficient of 0.81 (0.16), and an average point-to-mesh
distance of 1.25 (1.34) and 2.44 (2.32) millimeters on both of
their methods. Lynch et al. [35], on the other hand, achieve an
accuracy of 1.13 (0.55). However, a fair comparison is not pos-
sible because they use different image modalities, namely CT
and MRI, respectively.

As a final remark, we should stress that the main reason for the
observed performance (as shown in Table II) is that, opposing
to other related works, our algorithm partitions the contour into
part-of-segments. This leads to a competing (partial) segmenta-
tions through the weights (i.e., association probabilities) given to
the data interpretation (i.e., combinations of valid/invalid part-
of-contours).6 Each data interpretation embraces a specific part
of the contour. Say that, we have a linear combination of Kalman
filters, each one specialized in a given interpretation, and acting
on given part of the contour. The resulting state update is a linear
combination of this bank of Kalman filters. This is the point that
makes PDAF robust for the segmentation.

IX. CONCLUSION

This paper presents a 3-D segmentation system that is able
to segment the LV in echocardiographic volumes. The method-
ology is based on the use of a probabilistic data association
filter, originally proposed in the context of control theory, to
improve the detection of the ventricle boundary. The proposed
segmentation system was coupled with an automatic initializa-
tion method to produce a fully automatic segmentation pro-
cedure that achieved competitive results when compared to a
semiautomatic initialization based on space-carving.

The results show that the proposed system performs well in a
varied set of echocardiographic volumes. It also shows that the

6For instance in the example of Section VI, the winner/dominant interpreta-
tion is I12 . However, the other interpretations have also its contribution for the
final shape estimates.

accuracy of the segmentations is competitive with other state-
of-the-art works.
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