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Abstract. 3D Active shape models use a set of annotated volumes to
learn a shape model. The shape model is defined by a fixed number of land-
marks at specific locations and takes shape constraints into account in the
segmentation process. A relevant problem in which these models can be
used is the segmentation of the left ventricle in 3D MRI volumes. In this
problem, the annotations correspond to a set of contours that define the
LV border at each volume slice. However, each volume has a different num-
ber of slices (i.e., a different number of landmarks), which makes model
learning difficult. Furthermore, motion artifacts and the large distance
between slices make interpolation of voxel intensities a bad choice when
applying the learned model to a test volume. These two problems raise
the following questions: (1) how can we learn a shape model from volumes
with a variable number of slices? and (2) how can we segment a test volume
without interpolating voxel intensities between slices? This paper provides
an answer to these questions and proposes a 3D active shape model that
can be used to segment the left ventricle in cardiac MRI.

Keywords: Active shape model · 3D segmentation · Cardiac MRI ·
Interpolation

1 Introduction

Active shape models (ASMs) are commonly used to segment medical images
because they lead to robust shape estimates [1]. The ASM approach uses the
concept of Point Distribution Model (PDM) to learn the shape statistics from a
set of annotated volumes (training set), which defines the surface of the object
using a set of labeled landmarks. However, this strategy assumes that all the
surface models have the same landmarks.

This assumption is not always true. For example, in the segmentation of the
left ventricle (LV), in MRI volumes, the number of slices associated to the LV is
subject dependent. This means that the number of landmarks used to define the
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Fig. 1. Diagram of the proposed approach: (1) Learning phase - learning an ASM from
volumes with a variable number of slices; and (2) Test phase - applying the learned
model to a test volume.

LV surface is different. This leads to the following question: how can we learn the
shape statistics of the LV surface from volumes with a variable number of slices?

This paper answers this question. Before learning the shape statistics, the
surface models in the training set are normalized with respect to the number
of slices. The normalization is done by modeling the position of each landmark
(surface point) along the LV axis through interpolation. This allows the LV
surfaces to be resampled at different positions (i.e., to determine the number of
slices in the surface model), which allows the shape model for each slice to be
learned. A schematic illustration of the proposed approach is depicted in Fig. 1
(learning phase).

After learning the shape model, we use it to segment new volumes (test
phase), which may have a different number of slices. This means that the 2D
contours of the learned model may not match the slices of the test volumes.
Interpolation is a feasible solution [2–4], but causes the loss of contrast along the
LV border (see Sect. 3). This leads to the second question: how can we segment a
test volume without interpolating voxel intensities between slices?. We propose an
alternative approach that consists in interpolating the learned model statistics,
i.e., mean shape and modes of deformation.

The remainder of this paper is organized as follows. Section 2 describes the
proposed shape representation and how it is used to resample the training surface
models. Section 3 explains how the learned model is applied to segment a test
volume. Section 4 describes the experimental setup and the results obtained using
the proposed approach, and final conclusions are presented in Sect. 5.

2 Learning Phase - Interpolating the Training Surface
Models

In order to learn the shape model, we resample the surface models in the training
set using an interpolated model of landmarks’ position along the LV axis. Under
the assumption that, for any training volume v, the first (basal) slice is located
at the s1 = 0 and the last (apical) slice at sSv = 1, the axial position of the
slices is given by

sm =
m − 1
Sv − 1

, (1)
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where m = 1, . . . , Sv, and Sv is the number of slices in volume v. Let xv(sm) ∈
R

2N×1 be the LV contour on the m-th slice, defined by N points,

xv(sm) =
[
x1�

(sm),x2�
(sm), . . . ,xN �

(sm)
]�

, (2)

where xi(sm) =
[
xi
1, x

i
2

]� ∈ R
2×1 is the position of the i-th point. We assume

that all the contours are sampled with N points and that there is a correspon-
dence between the i-th point of one contour and the i-th point of another contour,
i.e., they represent the same landmark. We wish to model the slice contour as a
function of the axial position, x̂v(s), for any s ∈ [0, 1].

2.1 Interpolated Surface Model

The proposed approach aims to describe the position of the contour points of
a specific volume v, x̂v(s), along the LV axis by using a combination of K
polynomial basis functions, ψ(s) ∈ R

K×1,

x̂v(s) = Cvψ(s), (3)

where Cv ∈ R
2N×K is the coefficient matrix associated to volume v. The coeffi-

cient matrix is specific of volume v and each line in the matrix is associated to a
coordinate of a specific contour point. On the other hand, the polynomial basis,
ψ(s) =

[
1, s, . . . , sK−1

]�, depend only on the slice position, s.
This representation provides an estimate of the LV contour for any position

s ∈ [0, 1]. This will be used to resample the surface models in the training set.
However, first, the coefficient matrix Cv associated to the surface model, v, has
to be estimated from the corresponding annotations. This is addressed in the
following subsection.

2.2 Resampling the Surface Models in the Training Set

In order to resample a specific surface model of volume v in the training set, the
corresponding coefficient matrix Cv has to be computed, based on the available
annotations. First, let us denote Xi

v ∈ R
2×Sv

as the position (trajectory) of
the i-th point in the contour along the axial position s,

Xi
v =

[
Xi

1v

Xi
2v

]
=

[
xi
1(s1), . . . , xi

1(sSv )
xi
2(s1), . . . , xi

2(sSv )

]
=

[
xi(s1), . . . , xi(sSv )

]
. (4)

The coefficient ci
j ∈ R

1×K , which is the line from matrix Cv associated with the
trajectory points Xi

jv, is computed by finding

ci
j = arg min

c
‖Xi

jv

� − Ψc�‖2 + γ‖c‖2, (5)
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where Ψ = [ψ(s1), . . . ,ψ(sSv )]� ∈ R
Sv×K is the concatenation of the polyno-

mial basis ψ(sm) for m = 1 . . . , Sv, and γ is a regularization constant. This is a
ridge regression formulation [5] that has the following solution

ci
j = Xi

jvΨ
(
Ψ�Ψ + γI

)−1
, (6)

where I is the K × K identity matrix. This approach differs from the ordinary
least squares due to the regularization term, which constrains the solution and
allows the estimation of ci

j not only for K ≤ Sv, but also when K > Sv.
The solution (6) can be computed for all the lines in Cv, leading to

Cv = XvΨ
(
Ψ�Ψ + γI

)−1
, (7)

where Xv = [xv(s1), . . . ,xv(sSv )] ∈ R
2N×Sv

. Now, the contour, x̂v(s), can be
obtained for any position s ∈ [0, 1] using (3).

This approach is used to resample all the surface models in the training set
at sm = m−1

Sr−1 , m = 1, . . . , Sr, where Sr is the desired number of slices. This
guarantees that all volumes have the same number of landmarks.

2.3 Learning the Shape Statistics

Once all the surface models in the training set have been resampled, it is possible
to learn a shape model. We assume a surface model results from deforming
the mean shape and applying a transformation associated to the pose of the
LV. Therefore, before computing the shape statistics, all the surface models
have to be aligned. This is done by finding, for each surface, a global (pose)
transformation Tθ that minimizes the following sum of squared errors

E(θ) =
Sr∑

m=1

N∑
i=1

∥∥∥∥Tθ

(
x̂i

(
m − 1
Sr − 1

))
− xi

ref

(
m − 1
Sr − 1

)∥∥∥∥
2

, (8)

where xref is a reference shape (for instance, one of the training shapes randomly
selected), and Tθ(·) is a 2D similarity transformation with parameters θ = {a, t},
applied to all slices, such that

Tθ

(
x̂i(s)

)
= X̂i(s)a + t, (9)

where

X̂i(s) =
[

x̂i
1(s) −x̂i

2(s)
x̂i
2(s) x̂i

1(s)

]
,a =

[
a1

a2

]
, t =

[
t1
t2

]
.

We are only interested in the translation, rotation and scaling within the axial
(slice) plane to guarantee that the slice contours remain orthogonal to the LV
axis. The minimization of (8) leads to a standard least squares solution similar
to [6].
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After the training surfaces have been aligned, the mean shape of each slice,
x(s), is computed as the average slice contour over all the volumes in the training
set. The first L main modes of deformation, D(s) = [d1(s), . . . ,dL(s)] ∈ R

2N×L,
and the corresponding eigenvalues, λl(s), are obtained by Principal Component
Analysis (PCA), where dl(s) ∈ R

2N×1 is the l-th main mode of deformation
at the axial position s, and L ≤ 2N is the number of main deformation modes
that are used.

3 Robust 3D ASM - Segmenting a Test Volume

The shape model learned by the previous methods is used to segment other
cardiac MR volumes. As before, the number of slices in a test volume, which
we denote as St, may not be the same as the learned shape model, Sr. In
case St �= Sr, one possible approach would be to interpolate the volume to
determine the intensity values at the same axial positions as the shape model
contours. However, the spatial resolution of MRI between axial slices is very low
(approximately 10 mm spacing between slices), and motion artifacts can cause
significant displacements in the location of the LV contour in consecutive slices.
Consequently, the location of the LV border may become hard to determine in
interpolated images, as shown in Fig. 2

Fig. 2. Example of an interpolated image, at s = s4+s5
2

, obtained by linear interpola-
tion between two consecutive slices, s4 and s5.

We propose a different approach that consists in resampling the shape model
(mean shape and deformation modes) to have the same number of slices as
the test volume. The mean shape can be easily interpolated using the strategy
in Sect. 2. We compute the corresponding coefficient matrix, C, using (7), and
resample the mean shape at St slices, s = m−1

St−1 , with m = 1, . . . , St, using (3).
On the other hand, computing the main modes of deformation for intermedi-

ate slices is not straightforward. The reason is that the modes of deformation are
sorted according to the value of the corresponding eigenvalues. Since eigenvalues
are learned independently for each slice, it is not possible to find corresponding
deformation modes in different slices. Therefore, we use a simpler approach, that
consists in finding the correspondences between deformation modes in consecu-
tive slices and use them to perform a linear interpolation, as follows. Consider a
slice position, s ∈ [sm, sm+1], located between slices sm and sm+1. The deforma-
tion modes at this slice, D(s) = [d1(s), . . . ,dL(s)], are determined using linear
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interpolation between corresponding deformation modes in sm and sm+1. Let
α ∈ [0, 1] be the relative distance of slice s ∈ [sm, sm+1] to sm,

α =
s − sm

sm+1 − sm
. (10)

Without loss of generality, we assume that sm is the closest slice (i.e., α ≤ 0.5).
The l-th deformation mode and corresponding eigenvalue are given by

dl(s) = (1 − α)dl(sm) + αdF (l)(sm+1) (11)
λl(s) = (1 − α)λl(sm) + αλF (l)(sm+1), (12)

where F (·) maps the correspondences between the deformation modes in sm to
sm+1,

F (l) = arg min
n

‖dl(sm) − dn(sm+1)‖ . (13)

This interpolation process is repeated for all the deformation modes at all the
required slices, i.e., for l = 1, . . . , L and for s = m−1

St−1 , with m = 1, . . . , St.
Once all the deformation modes and eigenvalues have been computed, we

define the LV surface as

x(s) = Tθ (x(s) + D(s)b(s)) . (14)

This means that the segmentation of the test volume is obtained by finding the
parameters for the pose transformation, θ = {a, t}, and the deformation coeffi-
cients, b(s). In this work, this is achieved using the robust estimation method
called EM-RASM, which is able to compute the shape model parameters in the
presence of outliers. See [7] for an in-depth description of this methodology.

4 Results

The proposed method was evaluated on a set of 20 volumes extracted from
the publicly available dataset provided by Andreopoulos and Tsotsos [4]. This
database provides the endocardial contour of the LV that will be considered as
ground truth.

The results were obtained using a leave-one-out scheme, where the shape
model was trained using 19 volumes and then applied to the remaining (test)
volume. In all the tests, each slice contour was resampled, in arc-length, at
N = 40 points, and the surface models were resampled at Sr = 8 slices, using
K = 6 and γ = 10−5. Therefore, the total number of points in the surface models
was N ×Sr = 320. In the test phase, the total number of points in the resampled
shape model was N ×St (it depended on the test volume). The segmentation was
quantitatively evaluated using the average Dice similarity coefficient [8], dDice,
and the average minimum distance between the surface model points and the
ground truth, dAV, measured in mm.

Some examples of the segmentations are shown in Fig. 3. It is possible to see
that the obtained segmentations are similar to the ground truth, although the
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algorithm performs better in the basal slices than in the apical slices. This is due to
the fact that the LV chamber is very small in apical slices, and its borders are often
irregular. The overall results, according to the Dice coefficient and the average
minimum distance, were dDice = 0.88 ± 0.07 and dAV = 1.3 ± 0.7 mm.

Fig. 3. Examples of the obtained segmentations. Each line shows a different volume
and each row a different slice, starting at the basal slice (left) and ending at the apex
(right). The red and dashed green lines are the output of the proposed algorithm and
the ground truth, respectively (Color figure online).

5 Conclusion

This paper proposes a 3D Active Shape Model (ASM) for the segmentation of the
left ventricle in cardiac MRI. Although ASMs based approaches are commonly
used to segment medical images, they cannot be directly used in cardiac MRI
the volumes have the variable number of slices.

We propose to deal with this issue by using a continuous representation
for the surface model, which allows the surface model to be resampled to a
predefined number of slices. By resampling all the surface models in the training
set, we establish a correspondence for the landmarks (surface points) between
all the surface models. Furthermore, the same problem arises in the test phase,
because the learned model may have a different number of slices. The proposed
approach interpolates the learned model, i.e., the mean shape and the main
modes of deformation, to avoid interpolating intensity values between the volume
slices.

The results show that the proposed method is able to accurately segment the
LV.
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