
Unscented Bayesian Optimization for Safe Robot Grasping
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Abstract— Safe and robust grasping of unknown objects is a
major challenge in robotics, which has no general solution yet.
A promising approach relies on haptic exploration, where active
optimization strategies can be employed to reduce the number
of exploration trials. One critical problem is that certain optimal
grasps discoverd by the optimization procedure may be very
sensitive to small deviations of the parameters from their
nominal values: we call these unsafe grasps because small errors
during motor execution may turn optimal grasps into bad
grasps. To reduce the risk of grasp failure, safe grasps should
be favoured. Therefore, we propose a new algorithm, unscented
Bayesian optimization, that performs efficient optimization
while considering uncertainty in the input space, leading to
the discovery of safe optima. The results highlight how our
method outperforms the classical Bayesian optimization both
in synthetic problems and in realistic robot grasp simulations,
finding robust and safe grasps after a few exploration trials.

I. INTRODUCTION

Learning how to grasp unknown objects can be performed
in two different ways. One strategy relies on gathering
extensive amounts of data from multiple sensors and learn
features that allow grasping generalization. Those features
are mapped to optimal grasp configurations and strategies.
However, even for a simple gripper, the amount of data
required for proper generalization is very large [1]. A more
natural alternative is on-the-fly learning by trial and error
[2]. This can be achieved with minimal visual or haptic
input and it naturally generalize to multiple objects and tasks.
However, on-the-fly learning has two problems. First, it can
be expensive. Thus, we need an efficient grasping exploration
methodology. Second, it can get lucky. We need to guarantee
that the optimal grasp can be repeated in the presence of
noise with sufficient quality. A brute-force approach would
need to test grasps in many different configurations in search
for the best grasping point and, for each configuration, repeat
the test many times to average out the robot positioning
uncertainty. This is clearly unfeasible in practice, and better
search strategies must be devised.

In this paper, we follow the trial and error methodology for
grasping and directly address the two problems. First, given
an object, we must find the configuration that maximize grasp
quality with a small budget. Second, how do we incorporate

*This work was partially supported by the EU project LIMOMAN [PIEF-
GA-2013-628315], Portuguese project FCT [UID/EEA/50009/2013] and
Spanish projects DPI2015-65962-R (MINECO/FEDER, UE) and CUD2013-
05 (SIRENA).

1Institute for Systems and Robotics, Instituto Superior Tecnico, Univer-
sidade de Lisboa, Portugal josemscnogueira@gmail.com,
alex@isr.tecnico.ulisboa.pt,
ljamone@isr.tecnico.ulisboa.pt

2Centro Universitario de la Defensa, Zaragoza, Spain
rmcantin@unizar.es

repeatability errors in the grasp configuration such as op-
timality is preserved without performing multiple trials. In
robotics in general and, for the problem of robot grasping in
particular, Bayesian optimization has been one of the most
successful and efficient trial-and-error techniques [2], [3],
[4], [5], even in the presence of mechanical failures [6]. In
this setup, repeatability errors correspond to uncertainty in
the input space.

Bayesian optimization [7], [8] is a global optimization
technique for black-box functions. Because it is designed
for sample efficiency, at the cost of extra computation, it is
intended for functions that are expensive to evaluate (in terms
of cost, energy, time). The beauty of Bayesian optimization
is its capability to deal with general black-box functions,
therefore being able to address the grasping problem without
any extra information, just the results from previous trials.
Bayesian optimization relies on a probabilistic surrogate
function (e.g. a Gaussian process) that is able to learn
about the target function based on previous samples and,
therefore, drive future sampling more efficiently. However,
to the authors knowledge, the consideration of uncertainty
in the input space has been addressed neither in the grasp
planning literature nor in the Bayesian optimization liter-
ature. There has been previous works that consider input
noise in Gaussian process regression [9], however, those
methods propagate the input noise to the output space,
which may result in unnecessary exploration of the space
for the optimization problem. Safe exploration has also been
recently addressed within Bayesian optimization, but in that
case, the problem is to guarantee that the outcome is above
a threshold for each trial [10].

The main contribution of the paper addresses the problem
of input noise in Bayesian optimization, which is then
applied to robot grasping. For dealing with the input noise,
we need a system to propagate the noise distribution from
the input query through all the models and decisions of our
method. We solve this with the unscented transformation
[11], [12], a method to estimate the results of applying a
nonlinear transformation to a probability distribution.

In this paper, we present the unscented Bayesian optimiza-
tion (UBO) algorithm. It has the advantages of the sample
efficiency from Bayesian optimization and the capability of
dealing with input noise during function queries. Applied to
grasping, this means that the method can find the optimal
grasp while considering the input noise for safety. Further-
more, due to the recent popularity of Bayesian optimization
in many areas (e.g. autonomous algorithm tuning [13], robot
planning [14], [15], control [16], [17], reinforcement learning
[18], [5], sensor networks [19], etc.), this method can directly



impact many other fields, that would greatly benefit from an
extension to deal with input noise.

II. BAYESIAN OPTIMIZATION

Consider the problem of finding the optimum (e.g. min-
imum) of an unknown real valued function f : X → R,
where X is a compact space, X ⊂ Rd, d ≥ 1, with a
maximum budget of N evaluations of the target function f .
The Bayesian optimization algorithm selects the best query
points at each iteration so that the optimization gap |y∗−yn|
is minimum for the available budget. This is achieved by
using two ingredients. First, a probabilistic surrogate model:
a distribution over the family of functions P (f), where the
target function f() belongs, built incrementally using the
sample evaluations. Second, a Bayesian decision process,
that uses the information captured in the surrogate model
to select the next query point in order to maximize the
information about the optimum. Therefore, Bayesian opti-
mization can be seen as an active learning approach to find
the optimum. Without loss of generality, in the remainder
of the paper we assume that the surrogate model P (f)
is a Gaussian process GP(x|µ, σ2,θ) with inputs x ∈ X,
scalar outputs y ∈ R and an associated kernel or covariance
function k(·, ·) with hyperparameters θ. The hyperparameters
are estimated using a Monte Carlo Markov Chain (MCMC)
algorithm, i.e.: slice sampling [13], [20], resulting in m
samples Θ = {θi}mi=1.

Given at step n a dataset of query points X = {x1:n} and
its respective outcomes y = {y1:n}, then the prediction of the
Gaussian process at a new query point xq , with kernel ki con-
ditioned on the i-th hyperparameter sample ki = k(·, ·|θi) is
normally distributed, ŷ(xq) ∼

∑m
i=1N (µi, σ

2
i |xq), where:

µi(xq) = ki(xq,X)K−1i y

σ2
i (xq) = ki(xq,xq)− ki(xq,X)K−1i ki(X,xq)

(1)

The vector ki(xq,X) is the cross-correlation of the query
point xq with respect to the dataset X and Ki = Ki(X,X)+
Iσ2

n is the Gram matrix corresponding to kernel ki for the
dataset X, with noise variance σ2

n. The noise term represents
the observation noise in stochastic functions [21] or the
nugget term for surrogate missmodeling [22]. Note that,
because we use a sampling distribution of θ the predictive
distribution at any point x is a mixture of Gaussians.

To select the next point at each iteration, we use the
expected improvement criterion [23] as a way to minimize the
optimality gap. The expected improvement is the expectation
of the improvement function I(x) = max(0, ρ − f(x)),
where ρ is an incumbent value, usually the best outcome
until that iteration ybest or, for stochastic functions, the best
average prediction ŷbest. Taking the expectation over the
mixture of Gaussians of the predictive distribution, we can
compute the expected improvement as:

EI(x) = Ep(y|x,θ) [max(0, ρ− f(x))]

=

m∑
i=1

[(ρ− µi) Φ(zi) + σiφ(zi)]
(2)

where φ and Φ are the corresponding Gaussian probability
density function (PDF) and cumulative density function
(CDF) and zi = (ρ − µi)/σi. In this case, (µi, σ

2
i ) is the

prediction computed with Equation (1).
Finally, in order to reduce initialization bias and improve

global optimality, we rely on an initial design of p points
based on Latin Hypercube Sampling (LHS), as suggested in
[24].

III. UNSCENTED BAYESIAN OPTIMIZATION

In this paper, we propose to consider the input noise during
the decision process to explore and select the regions that
are safe. That is, the regions that guarantee good results
even if the experiment/trial is repeated several times. In this
respect, our contribution is twofold: we present the unscented
expected improvement (Sec. III-B) and the unscented opti-
mum incumbent (Sec. III-C). Both methods are based on the
unscented transformation (Sec. III-A), initially developed for
tracking and filtering applications [25], [11].

A. Unscented transformation

The unscented transformation is a method to propagate
probability distributions through nonlinear transformations
with a trade off of computational cost vs accuracy. It is
based on the principle that it is easier to approximate a
probability distribution than to approximate an arbitrary
nonlinear function [11]. The unscented transformation uses
a set of deterministically selected samples from the original
distribution (called sigma points) and transform them through
the nonlinear function f(·). Then, the transformed distribu-
tion is computed based on the weighted combination of the
transformed sigma points.

The advantage of the unscented transformation is that the
mean and covariance estimates of the new distribution are
accurate to the third order of the Taylor series expansions
of f(·) provided that the original distribution is a Gaussian
prior, or up to the second order of the expansion for any
other prior. Fig. 1 highlights the differences between approx-
imating the distribution using sigma points or using standard
first-order Taylor linearization. The distribution from the
UT is closer to the real distribution. Because the prior and
posterior distributions are both Gaussians, the unscented
transformation is a linearization method. However, because
the linearization is based on the statistics of the distribution,
it is often found in the literature as statistical linearization.

Another advantage of the unscented transformation is its
computational cost. For a d-dimensional input space, the
unscented transformation requires a set of 2d + 1 sigma
points. Thus, the computational cost is negligible compared
to other alternatives to Bayesian approximation such as
Monte Carlo, which requires a large number of samples, or
numerical integration such as Gaussian quadrature, which
has an exponential cost on d. Van der Merwe [12] proved
that the unscented transformation is part of the more gen-
eral sigma point filters, which achieve similar performance
results.



Fig. 1: Propagation of a normal distribution through a nonlin-
ear function. The first order Taylor expansion (dotted) only
uses information of the function at the mean point to compute
the linear approximation, while the UT (dashed) approaches
the function with a linear regression of several sigma points.
The actual distribution is the solid one. (Adapted from [12])

1) Computing the unscented transformation: Assuming
that the prior distribution is a Gaussian distribution x ∼
N (x̄,Σx), then the 2d + 1 sigma points of the unscented
transformation are computed by

x0 = x̄

x
(i)
+ = x̄ +

(√
(d+ k)Σx

)
i

∀ i = 1 . . . d

x
(i)
− = x̄−

(√
(d+ k)Σx

)
i

∀ i = 1 . . . d

(3)

where (
√
·)i is the i-th row or column of the corresponding

matrix square root. In this case, k is a free parameter that can
be used to tune the scale of the sigma points. For optimal
values of k, see [11].For these sigma points, the weights are
defined as:

ω0 =
k

d+ k

ω
(i)
+ =

1

2(d+ k)
∀ i = 1 . . . d

ω
(i)
− =

1

2(d+ k)
∀ i = 1 . . . d

(4)

Then, the transformed distribution is x′ ∼ N (x̄′,Σ′x), where:

x̄′ =

2d∑
i=0

ω(i)f(x(i)) (5)

B. Unscented expected improvement

Bayesian optimization is about selecting the most inter-
esting point at each iteration. Usually, this is achieved by
a greedy criterion, such as the expected improvement, the
upper confidence bound or the predictive entropy. These
criteria, also denoted acquisition functions, select the query
point that has the higher potential to become the optimum,
assuming that the query is deterministic. However, in our
case, the query is a probability distribution due to input noise.
Thus, instead of analysing the outcome of the criterion, we
are going to analyse the resulting posterior distribution of

transforming the query distribution through the acquisition
function.

For the purpose of safe Bayesian optimization, we will
use the expected value of the transformed distribution as
the acquisition function. Therefore, we define the unscented
expected improvement as:

UEI(x) =

2d∑
i=0

ω(i)EI(x(i)) (6)

where x(i) and ω(i) are computed according to equations (3)
and (4) respectively. The expected value of the transformed
distribution x̄′ = UEI(x) is enough to take a decision
considering the risk on the input noise. Anyway, the value
of Σ′x represents the output uncertainty and can also be used
as meta-analysis tool.

C. Unscented optimal incumbent

The unscented expected improvement can be used to
drive the search procedure towards safe regions. However,
because the target function is unknown by definition, the
sampling procedure can still query good outcomes in unsafe
areas. Furthermore, in Bayesian optimization there is a final
decision that is independent of the acquisition function
employed. Once the optimization process is stopped after
sampling N queries, we still need to decide which point
is the best. Moreover, after every iteration, we need to say
which point is the incumbent. If the final decision about
the incumbent selects the sample with best outcome x∗

such that ybest = f(x∗) we may select an unsafe query.
Instead, we propose to apply the unscented transformation
also to the select the optimal incumbent x∗, based on the
function outcome f() at the sigma points. This would require
additional evaluations of f(), but the main idea of Bayesian
optimization is to reduce the number of evaluations on f().
Instead of evaluating f() at the sigma points, we evaluate
the sigma points at the GP surrogate average prediction µ().

Therefore, we define the unscented outcome (UO) as:

UO(x) =

2d∑
i=0

ω(i)
m∑
j=1

µj(x
(i)) (7)

where
∑m

j=1 µj(x
(i)) is the prediction of the GP according to

equation (1) integrated over the kernel hyperparameters and
at the sigma points of equation (3). Under these conditions,
the incumbent of the optimal solution x∗ corresponds to:

x∗ = arg max
x

UO(x) (8)

As an illustrative example of the unscented Bayesian
optimization process, take the RKHS function in Fig. 2. In
this case, the maximum of the function is at x ≈ 0.87.
However, this maximum is very risky, that is, small variations
in x result in large deviations from the optimal outcome. On
the other hand, the local maximum at x ≈ 0.07 is safer.
Even if there is noise in x, repeated queries will produce
similar outcomes. In this case, if we assume input noise
of σx = 0.05 and compute the unscented transformation
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Fig. 2: Left: RKHS function from [26]. Right: Gaussian
mixture (GM) function

of that noise through the function, we can see that the
sigma points centered at the leftmost maximum would have
higher outcome that the sigma points centered at the global
maximum. Therefore, the expected posterior value of the
local smooth maximum would be larger than the value at
the global narrow maximum.

IV. RESULTS

In this section we describe the experiments performed to
evaluate the benefits of the unscented Bayesian optimization
(UBO) with respect to the classical expected Bayesian opti-
mization (BO). The main goal is to demonstrate that, by us-
ing the UBO, we minimize the risk of choosing unsafe global
optima. We first illustrate the method applied to synthetic
functions, to clearly visualize the importance of selecting
safe optima. Then, we show the results of doing autonomous
exploration of daily life objects with a dexterous robot hand
using realistic simulations, reproducing the conditions of a
real robot setup.

In this work we have used and extended the BayesOpt soft-
ware [20] with the proposed methods. For the GP kernel, we
used the standard choice of the Matérn kernel with ν = 5/2.
Without loss of generality, we assume that the input noise
is white Gaussian, isotropic and stationary, i.e. N (0, Iσx),
although the method can be applied to anisotropic, nonsta-
tionary and even non-Gaussian noise.

To reproduce the effect of the input noise, we queried
the result of each method using Monte Carlo samples ac-
cording the input noise distribution at the incumbent point
at each iteration {y(i)mc(x∗)}. By analysing the outcome of
the samples we can estimate the expected outcome from the
current optimum ȳmc (x∗) and the variability of outcomes
std (ymc (x∗)). As we can see in the results, our method
is able to provide equal or better expected outcomes while
reducing the variability of those same outcomes.

A. Synthetic Functions

In this section, we use two synthetic functions with distinct
regions in terms of risk: the 1D RKHS from [26] and a
2D Gaussian mixture model, see Fig. 2. Both have a global
maximum at a narrow peak, which represents a region of
high risk.

Fig. 3: RKHS Results. Left: Expected outcome at the cur-
rent optimum ȳmc (x∗), Right: Variability of the outcome
std (ymc (x∗))

Fig. 4: Gaussian mixture Results. Left: Expected outcome
at the current optimum ȳmc (x∗), Right: Variability of the
outcome std (ymc (x∗))

We performed 100 runs of each optimization procedure
(BO and UBO) for each function (RKHS, GM). We used
100 Monte Carlo samples for {y(i)mc(x∗)}. For RKHS each
run has 5 initial samples with LHS and the optimization
performs 45 iterations. The input noise is set as σx = 0.01.
For GM each run has 30 initial samples and the optimization
performs 90 iterations. The input noise is set as σx = 0.1.
In Fig. 3 and Fig. 4 we show the statistics over the different
runs for the evaluation criteria, as a function of the number of
iterations. The shaded region represents the 95% confidence
interval. Being deterministic functions, we used σn = 10−6

as nugget in both cases.
For both functions, we can observe that UBO quickly

overcomes the results of BO. UBO computes less risky
solutions, as demonstrated by the higher expected return
value and lower standard deviation. In Table I we show the
numeric results obtained at the last iteration, as well as the
values of the worst sample of the Monte Carlo runs. The
worst case for UBO is always more favourable than the worst
case for BO by a large margin.

B. Robot Grasp Simulations

We use the Simox simulation toolbox for robot grasping
[27]. This toolbox simulates the iCub robot hand grasping
arbitrary objects. Given an initial pose for the robot hand and
a finger joint trajectory, the simulator runs until the fingers
are in contact with the object surface and computes a grasp



Fig. 5: Objects used in the simulations with corresponding
initial robot hand configuration. Left to right: bottle, mug,
glass and drill.

Fig. 6: Bottle. Left: Expected outcome at the current
optimum ȳmc (x∗), Right: Variability of the outcome
std (ymc (x∗))

quality metric based on wrench space analysis. We use a
representation of the iCub left hand which can move freely
in space and a few static objects (see Fig. 5). The robot
hand is initially placed with the palm facing parallel to one
of the facets, at a fixed distance of the object bounding box,
and the thumb aligned with one of the neighbour facets. The
hand pose is then defined with respect to the initial pose by
incremental translations and rotations: (δx, δy, δz, θx, θy, θz).
In the reported experiments we optimize the translation
parallel to the facet (δx, δy), while the other values are
fixed. The translation variables are bound to the limits of
the bounding box. A power grasp synergy was adopted for
the hand closure.

We performed 30 runs of the robotic grasp simulation for
each object and each optimization criterion. The robot hand
posture with respect to the objects was initialized as shown
in Fig. 5. We used 20 samples to compute {y(i)mc(x∗)}.

Each run starts with 40 initial samples with LHS and
proceeds with 60 iterations of optimization. We assume the
grasp quality metric to be stochastic, due to small simulation
errors and inconsistencies, and we set σn = 10−4. Also, we
assume an input noise σx = 0.03 (note that the input space
was normalized in advance to the unit hypercube [0, 1]d).
The results are shown in Fig. 6, 7, 8 and 9.

It can be seen that, for the bottle and glass, the UBO
method has clear advantages over BO. UBO obtains higher
mean values and lower standard deviations. For the drill,
UBO eventually overcomes BO after few iterations, which
might imply that the unsafe optimum is difficult to find,
but still exists. Looking at the quantitative results shown in
Table I, we can see that, at the end of the optimization,
UBO is better than BO in all criteria, except for the mean

Fig. 7: Mug. Left: Expected outcome at the current optimum
ȳmc (x∗), Right: Variability of the outcome std (ymc (x∗))

Fig. 8: Glass. Left: Expected outcome at the current optimum
ȳmc (x∗), Right: Variability of the outcome std (ymc (x∗))

output value for the mug. For the mug, the 100 trials are
not enough to obtain better mean values. We can see that
the mug and drill objects are more challenging due to their
non-rotational symmetry. Since the optimization is only done
in translation parameters, the method is missing exploration
in the rotation degrees of freedom. Furthermore, in the mug
case, the facet chosen was the one that contains the handle.
Trying to learn a grasp in this setting is much harder than
the other cases since, for the same input space volume,
the number of configurations which return a good metric
is much smaller. This deteriorates GP regression and hinders
Bayesian optimization performance in general. An alternative
in this case would be to use a nonstationary kernel [28].

In Fig. 10 we illustrate four grasps at the water bottle

Fig. 9: Drill. Left: Expected outcome at the current optimum
ȳmc (x∗), Right: Variability of the outcome std (ymc (x∗))



(a) y = 0.439 (b) y = 0.377 (c) y = 0.413 (d) y = 0.418

Fig. 10: Grasp safety. In this example the best grasp is at an
unsafe zone (a), because some bad grasps can be found in its
vicinity (b). The unscented Bayesian optimization chooses
grasps with lower risk at a safe zone (c) and (d), where
performance is robust to input noise.

ȳmc (x∗) worst ymc (x∗) std (ymc (x∗))
Exp. BO UBO BO UBO BO UBO
RKHS 4.863 4.934 2.881 4.657 0.554 0.065
GM 0.080 0.093 0.023 0.053 0.027 0.014
Bottle 0.550 0.567 0.390 0.430 0.077 0.065
Mug 0.119 0.114 0.051 0.059 0.029 0.027
Glass 0.421 0.452 0.080 0.252 0.184 0.087
Drill 0.101 0.108 0.050 0.068 0.030 0.018

TABLE I: Results at the last iteration of the Bayesian
optimization process (means over all runs). In this case, worst
represents the sample with worst outcome ymc.

explored during the experiments. Two of the grasps are per-
formed in a safe region while the two other are explored at a
unsafe region. Although the unsafe zone has one observation
with the highest value, it has also higher risk of getting a low
value observation in its vicinity.

V. CONCLUSION

The contribution of this paper is twofold. On the one
hand, we present a method for robust and safe grasping of
unknown objects by haptic exploration; because the process
is based on general black-box optimization, the method is
capable to deal with arbitrary objects, effectors and environ-
mental conditions. On the other hand, we have developed a
novel technique for Bayesian optimization in the presence
of input noise, that we have called unscented Bayesian
optimization. The potential interest of this method goes
beyond grasping or even robotics. Bayesian optimization is
currently being used in many applications: engineering, com-
puter sciences, economics, simulations, experimental design,
biology, artificial intelligence, etc. In all those fields, there are
many situations where input noise or uncertainty may arise,
and in which safe optimization is therefore fundamental. For
example, in other areas of robotics, it might be used for
navigation, planing or sensor placement, as the robot/sensor
location is uncertain.
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