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ABSTRACT

This paper proposes a new approach for the segmentation of
the endocardium of the left ventricle using short axis mag-
netic resonance (MR) images. The proposed method com-
prises two main stages. First, each image is converted to po-
lar coordinates, and an edge map is computed from the trans-
formed image. Then, the contour of the left ventricle (LV)
is estimated by computing the optimal path along the edge
map, using a dynamic programming approach. The system is
evaluated on a public database comprising 660 magnetic res-
onance volumes and the results testify its usefulness both in
terms of running time and accuracy. The proposed methodol-
ogy is able to segment a whole volume in 1.5 seconds achiev-
ing an average Dice similarity coefficient of 85.9% (8.3%),
which compares favorably with related state-of-the-art meth-
ods.

Index Terms— Segmentation, cardiac MRI, dynamic
programming

1. INTRODUCTION

This paper proposes a new methodology tailored to provide
a fast and accurate segmentation of the left ventricle (LV) in
MR volumes. The goal is to help speed up the manual seg-
mentation of the LV, which is a laborious and time consuming
task required in most clinical practices.

The problem is addressed by sequentially analyzing the
slices (i.e., 2D images) of a volume. First, an initial guess of
the location of the LV in the basal slice is provided, by giving
an estimate of the center and radius of the endocardium in that
particular slice. This segmentation is then propagated to the
next slice as an initial guess, and the process is repeated until
the whole volume has been segmented.

Two main assumptions are taken into account in the pro-
posed approach: (i) that the LV boundary is approximately
circular in each slice of the MR volume; and (ii) that the con-
tour is associated to the presence of edges in the image. The
algorithm is characterized by two stages. The first stage aims
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to obtain an edge map, whose valleys correspond to the LV
boundary. The second stage uses dynamic programming (DP)
[1, 2] to determine the optimal path along the edge map. This
latter stage will provide the delineation of the LV contour.

2. RELATED WORK

The existing literature on the estimation of the LV in MR im-
ages is vast. Yet, this is an open problem, as testified by sev-
eral surveys (e.g. [3, 4]). This happens because this particu-
lar problem faces many difficulties, among which: (i) the LV
border is not always located at the image edges; (ii) the blood
flow leads to the presence of the gray level inhomogeneities;
and (iii) the presence of papillary muscles and trabeculations,
or wall irregularities, inside the heart chambers, that have the
same intensity profile as the endocardium. These difficul-
ties make most image features (e.g., image gradient) unable
to detect the entire LV boundary. Several works have been
proposed to tackle the above difficulties. For instance, [5]
introduces low-level image processing techniques incorporat-
ing anatomical knowledge to provide the convex hull of the
shape, or adopting morphological operations as in [6]. The
approach proposed in [7] is based on a thresholding opera-
tion to discern between outer and inner regions. In this line
of research, DP is also a common choice to separate the two
regions. Geiger et al. [8] were one of the first to use DP and
several others have since followed (see for instance [1, 9, 10]).

The proposed framework is inspired in [2], where DP is
used to extract the desired boundary. We combine this ap-
proach with the advantages of the DP method proposed in [1].
This strategy significantly reduces the computational com-
plexity, and thus, is able to obtain a fast LV segmentation
without compromising the accuracy of the results.

3. PROPOSED APPROACH

The proposed methodology comprises two main stages. First,
it estimates an edge map by analyzing the MR image in polar
coordinates. This process is illustrated in Fig. 1. Second, the
delineation of the LV contour is obtained by using DP to place
the contour along the valleys of the edge map. The following
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Fig. 1. Edge map estimation: (a) original MR image, I(x, y); (b)
image in polar coordinates, IP(r, θ); (c) image gradient, IG(r, θ);
and (d) edge map, eMAP(r, θ). The yellow line is the LV segmen-
tation (computed in (d)). The green and red lines correspond to the
minimum and maximum radius, respectively, and the blue line and
arrow help illustrate the conversion to polar coordinates.

sections describe these two stages in detail.

3.1. Edge map estimation

Since the LV boundary is roughly a circular shaped curve, the
edge map is computed in polar coordinates. This means that,
the intensity of a given pixel (r, θ) is obtained by computing
IP(r, θ) = I(x, y), as

x = cx + r cos(θ), y = cy + r sin(θ). (1)

where (x, y) are the Cartesian coordinates, and c = [cx, cy]> ∈
R2 are the coordinates of the LV center that are provided by
the user.

The intensity value of IP(r, θ) are obtained using bilinear
interpolation (see [11] for details) 1. The domain Dr ×Dθ in
which the polar coordinates, (r, θ), are defined in the image
IP(r, θ) are given as

Dr =
{
r1, . . . , rM ∈ R : ri = rmin + (i− 1)∆r

}
Dθ =

{
θ1, . . . , θN ∈ [0, 2π] : θj = (j − 1)∆θ

}
, (2)

where ∆r = rmax−rmin
M−1 , and ∆θ = 2π

N−1 ; rmax and rmin define
the width of the ring within which the LV border is expected
to be found. Note that the first and last column of IP corre-
spond to the same positions, i.e., θ1 = θN = 2π.

After the polar image IP(r, θ) has been computed, a
high pass filter is applied to obtain a gradient image IG(r, θ),
shown in Fig. 1 (c). In the gradient image, high intensity
pixels are correlated with the presence of an edge along that
particular radial line. Finally, to obtain a normalized edge
map from IG(r, θ), the following sigmoid function is used:

eMAP(r, θ) = (1 + exp
(
λ(IG(r, θ)− k)

)
)−1, (3)

where k > 0 and λ > 0 control the inflection point and the
sharpness of the sigmoid, respectively. In this work, the val-
ues for these parameters were empirically determined and set
to k = 20 and λ = 0.04. The above normalized edge map

1This interpolation is necessary since the transformation does not guaran-
tee that (x, y) take integer values in the image.

eMAP(r, θ) ∈ [0, 1] assigns a small cost to edges (supposedly
where the LV border is located) and a high cost to the remain-
ing regions of the image IG(r, θ).

3.2. Contour estimation

The delineation of the LV contour is obtained in the second
stage of the algorithm. This is achieved by fitting a curve
to the edge map, eMAP, that stretches from the left border to
right, and that tries to follow the valleys of the image (see Fig.
1 (d)).

If we define a parametric curve, say x̂(s), (where 0 ≤ s ≤
1 is the curve parameter), the goal is to find the curve such that

x̂ = arg min
x
E(x), (4)

where E is an energy function defined as

E(x) =

∫
s

Eint(x(s)) + Eext(x(s)) ds. (5)

Eint is the internal energy, that imposes smoothness on the
curve estimates x̂(s), and Eext is the external energy, which
is obtained from the image. This formalism in known as
deformable or active contour model (e.g., [12, 13]). In this
paper, we address this problem by using DP. The edge map
eMAP can be viewed as a M × N matrix, and the goal is to
find a curve r̂ = [r(1), ..., r(N)]> (a sequence of radius val-
ues), such that r(j) ∈ Dr corresponds to the LV radius for
angle θj . The problem formulation is similar to (4), but now
we are considering a discrete variables that are defined in po-
lar coordinates (r, θ),

E(r) =

N∑
j=1

Eint(r(j)) + Eext(r(j)). (6)

The data term is now given by

Eext(r(j)) = eMAP(r(j), θj), (7)

and the internal energy term is given as

Eint(r(j)) = d(r(j − 1), r(j))

=


0 if |r(j)− r(j − 1)| = 0

η if |r(j)− r(j − 1)| = ∆r

∞ otherwise.
(8)

The former corresponds to the edge map, whose minima are
located along its valleys, and the latter constrains the curve,
r, by penalizing large differences between consecutive pairs
(r(j − 1), r(j)), with Eint(r(1)) = 0.

Putting (7), (8) together, (6) can be rewritten as

E(r) = eMAP(r(1), θ1)+

+

N∑
j=2

eMAP(r(j), θj) + d(r(j − 1), r(j)). (9)
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Fig. 2. 2-Loop algorithm. The blue line depicts the solution of A1
with initial position r(1) = rmin; the red line depicts the solution of
A1 on the reordered edge map with initial position r′(1) = r(N/2);
the green dashed line represents the ground truth segmentation.
The yellow and magenta rectangles and black arrows illustrate the
switching of the two halves of the edge map and the optimal path.

Finally, the optimal contour is computed as

r̂ = arg minr E(r)
s.t. r(1) = r(N)

r(j) ∈ Dr, j = 1, . . . , N
(10)

where Dr is defined in (2).
To solve (10), we rewrite (9) as follows

Ej(ri) = eMAP(ri, θj) + min
ρ∈Dr

[
d(ρ, ri) + Ej−1(ρ)

]
, (11)

which can be viewed as the optimal cost to reach the posi-
tion (ri, θj) in eMAP. The cost Ej(ri) can thus be recursively
obtained by computing the optimal costs of reaching the pre-
vious column, Ej−1(ri), i = 1, . . . ,M . To guarantee that the
solution starts and ends at a specific position r(1), we simply
set eMAP(ri, θ1) = ∞, ∀ri∈Dr : ri 6= r(1). The final proce-
dure, denoted as Forward-Backward algorithm (FB-A), is the
following [1, 2]:

1. Forward step: Compute the optimal costs of all the
curves that start at θ1 and end at θN , using (11), and,
for each local minimization problem (second term in
(11)), store the corresponding radii

φ(ri, θj) = arg min
ρ∈Dr

d(ρ, ri) + Ej−1(ρ). (12)

2. Backward step: Trace back the optimal path that ends
at r(N) = r(1), using the stored radii

r(N) = r(1) (13)
r(τ − 1) = φ(r(τ), θτ ), τ = N, ..., 2 (14)

To obtain the object contour we have to: (i) run the FB-A for
all possible starting points r(1) ∈ Dr, obtaining several paths,
and (ii) select the path with the lowest global cost (computed
using (9)). Notice, however, that the above procedure can
lead to a high computational cost, since it must be applied
for all starting positions, which increases with M . Alterna-
tively, [1] proposes to mitigate this limitation by running the

FB-A algorithm only twice (2-Loop algorithm). Basically,
this algorithm assumes that the optimal path close to the col-
umn j = N/2 does not depend on the choice of the starting
point r(1), since r(1) is far from r(N/2). This means that
the optimal value obtained for r(N/2) will be the same what-
ever the choice of the starting point r(1) is. Hence, the al-
gorithm FB-A needs to be run only a second time starting at
the optimal solution r(N/2). The procedure is summarized
as follows:

(i) it runs the FB-A with some initial point r(1); then

(ii) it switches the two halves of the edge map, and
runs FB-A starting at the solution obtained in (i) at the
location r′(1) = r(N/2); and finally

(iii) the two halves of the new optimal path, obtained
in (ii), are switched back to the original order.

The 2-Loop procedure is illustrated in Fig. 2. It is possible
to see in Fig. 2 (a) that even if we choose r(1) = 1, which
is very far from the LV border, in the first run, the optimal
path near the column j = N/2 matches the desired solution
(shown in green in (c)). This indicates that the assumption
on which the 2-Loop algorithm is based is valid (at least for
some sufficiently large N ).

4. EXPERIMENTAL SETUP

The proposed approach is evaluated on a public benchmark
dataset of cardiac MR sequences [14]. This dataset comprises
33 sequences of volumes concerning both healthy and disease
cases. Each sequence contains 20 volumes, covering the sys-
tole and diastole phases of the cardiac cycle. Each volume
contains a number of slices varying from 5 to 10, with a spac-
ing of 6-13 mm. Each slice is a 256 × 256 image, with a
resolution of 0.93-1.64 mm. The ground truth (GT) of the
dataset is already provided.

For evaluation purposes, a quantitative evaluation of the
LV segmentation is conducted. To accomplish this two met-
rics are used: (i) the volumetric Dice coefficient, and (ii)
the average perpendicular distance (AV). The Dice coefficient
measures the percentage of the overlap between the proposed
segmentation and the GT (i.e., Dice = 1 is a perfect match
between the estimated contours and the GT). The AV mea-
sure corresponds to the average distance between each point
in the estimated contour and the closest GT point. Also, we
show the results excluding the bad segmentations (i.e., results
with dAV > 5 mm), jointly with the corresponding percentage
of good segmentations. In the Section 5 we show the perfor-
mance of the algorithms labeled as FB-A and 2-Loop using
the above mentioned metrics, as well as the computational
performance of each method.



Table 1. Statistical evaluation of the proposed algorithms (mean
and standard deviation). Dashed entries in the “% Good” column
mean that no segmentations were excluded.

Dice (%) AV (mm) % Good Time
Volume (s)

FB-A 83.5 (9.1) 2.6 (1.3) - 55.486.1 (7.0) 2.1 (0.6) 89.7
2-Loop 82.8 (11.2) 2.7 (1.7) - 1.585.9 (8.3) 2.1 (0.7) 88.8

Table 2. Comparison with state-of-the-art approaches.

Dice (%) AV (mm) % Good
Huang et al. [15] 89 (4) 2.2 (0.5) 79.2
Gopal et al. [16] 84 (4) 3.7 (0.6) -

Ehrhardt et al. [17] 83 (NA) 1.8 (0.7) -
Santiago et al. [18] 79 (8) 3.5 (1.4) -

2-Loop 85.9 (8.3) 2.1 (0.7) 88.8

5. RESULTS

Table 1 shows the statistical results of the two approaches
FB-A and 2-Loop. In terms of the segmentation accuracy,
both approaches exhibit a similar performance. However, in
terms of running time, the 2-Loop is far superior, as shown
in the last column of Table 1.

Table 2 shows a comparison between the proposed ap-
proach and some other related methods available in the lit-
erature. The segmentation assumptions in these methods are
different from ours. [15] relies on an image based method,
whilst [16, 17, 18] are based on a deformable models incor-
porating shape information. From Table 2, it is possible to see
that the accuracy of the proposed method is competitive to all
the other state-of-the-art approaches. Notice however that the
proposed approach uses negligible shape information when
compared with [16, 17, 18]. Also note that although in [15]
achieves remarkable performance, the percentage of “good”
results is considerable smaller then ours.

Fig. 3 summarizes the performance of the 2-Loop ap-
proach regarding the Dice coefficient. The image shown has
33 × 20 pixels, which correspond to the results for each of
the 33 patients and each of the 20 volumes contained in each
sequence. From the figure, the main conclusion is that the
majority of the volumes are accurately segmented (see green
color of each pixel of the image). Poorer segmentations are
easily depicted in red. Also note that the algorithm exhibits
better results in the diastole phase (see frames/columns 1-5
and 11-20) than in the systolic phase (frames/columns 6-10).
This is somehow expected since the edges located at the LV
border are brighter in these frames. The segmentation fail-
ures (depicted in red) are mainly due to the presence of pap-
illary muscles. Fig. 4 shows examples of the segmentations
obtained, in which it is possible to see many accurate seg-
mentation, as well as poorer segmentations cause by the pres-
ence of papillary muscles (bottom right) or because the seg-
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Fig. 3. Dice coefficient of each volume segmentation (33 patients
× 20 frames).

Fig. 4. Examples of segmentations obtained using 2-Loop (red)
and comparison with the GT (green). Each image shows one slice
from a particular patient.

mentation was pulled towards the LV’s outer border (bottom
left). These cases are hard to segment using an edge-based
approach, since the strongest edges are not located on the LV
border.

6. CONCLUSIONS

In this paper we proposed a fast and accurate approach for
the segmentation of the LV in MR. The underlying idea of
the approach is that the segmentation of each slice in the LV
volume approximately has a circular shape. This fact sug-
gests the use of the edge map in polar coordinates, whose
valleys roughly correspond to the location of the LV bound-
ary. The delineation of the LV contour is obtained using a
dynamic programming algorithm. It is shown that the above
strategy is able to achieve remarkable results concerning both
accuracy and run time figures. Concerning the latter, the pro-
posed method requires only 1.5 sec. to provide an accurate
segmentation of the whole volume. This suggests that the
proposed methodology can be a helpful tool to speed up the
delineation of the LV contour in the clinical setup. Also, it
is shown that the proposed approach is competitive with re-
cent state-of-the-art approaches, which make more complex
assumptions. Future work should focus on alternative ways
to compute the edge map, in order to cope with the presence
of papillary muscles more robustly.
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