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Abstract—This work presents a dataset with surveillance
imagery over the sea captured by a small size UAV. This dataset
presents object examples ranging from cargo ships, small boats,
life rafts to hydrocarbon slick. The video sequences were
captured using different types of cameras, at different heights
and different perspectives. The dataset also contains thousands of
labels with positions of objects of interest. This was only possible
to achieve with the labeling tool also described in this work.
Additionally, using standard evaluation frameworks, we establish
a baseline of results using algorithms developed by the authors
which are better adapted to the maritime environment.
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I. INTRODUCTION

MARITIME surveillance is a key activity for many

countries. It is important to assure the safe and secure

use of the oceans for transportation and trade. It allows the

control of fisheries to guarantee the protection of resources and

ecosystems. Maritime surveillance also ensures that environ-

mental regulations are applied, preventing oil spill and bilge

dumping that have a severe impact on fauna, flora and also

coast human populations. Despite being an important activity,

to this day it is still a difficult endeavor. It implies the use

of vessels, aircraft and satellites, usually in a complementary

fashion. All these platforms have their own limitations and

therefore there is demand for additional technologies.

In the last decade, Unmanned Aerial Vehicles (UAVs) have

seen a huge increase not only in its deployment but also in its

capabilities. Right now, UAVs offer promising technologies to

aid remote sensing and oceanic surveillance. While traditional

aircraft are equipped with heavy radars, UAVs normally have

only light weight passive electro-optical sensors. Whereas in

traditional aircraft, the crew analyses the data being gathered,

in unmanned aircraft the system needs additional intelligence.

The additional intelligence is used to replace the human on

board or at least help the human operator on the ground.

Several methods have been developed to increase the pro-

cessing capabilities, following the developments in other areas

of computer vision and pattern recognition. In this area, many

authors use their own video sequences which are not publicly

available and do not allow any kind of comparison. More

recently, deep learning had a significant impact on computer
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vision, in tasks like classification and detection. One of the

factors that has been pointed out to its success is the current

abundance of images available online, allowing the training of

different learning algorithms. Yet, in the majority of datasets,

like ImageNet [1] represented in Fig. 1(a), the objects of

interest are dominant, i.e. occupy a significant area of the

image. This is not the case in aerial surveillance where, most

of the times, the object of interest is quite small. Additionally,

aerial surveillance images are captured from a different point

of view and have its own challenges. The perspective of objects

may change during its observation. Phenomena that generally

are not present on online images like severe glare, white caps

caused by waves and boat wakes also introduce noise.

To answer the lack of specialized datasets is common that

authors build their own datasets, for example as Figueira et

al. [2] and Nambiar et al. [3]. Bloisi et al. [4] have presented

MARDCT, a dataset used for detection, classification and

tracking of boats using visible and Infrared (IR) cameras.

In this case, images are captured mostly from buildings near

congested marine routes. Objects of interest have a relatively

big size when comparing to the image size. Moreover, because

cameras are still, the background is static. A similar approach

was followed in VAIS dataset [5], with visible and IR images

being captured by cameras installed in a pier. While this might

be useful for some surveillance applications, it is limited for

the case of airborne surveillance. Recently, datasets with nadir

oriented aerial images like VEDAI [6] and DLR 3K Munich

[7] have been introduced. These are quite useful for the survey

of an area but because of the necessary perspective corrections

are not suited for airborne real time surveillance tasks. In

that kind of task, there are movements of the aircraft that are

transmitted to the camera and cause the background to change

drastically. Moreover, the perspective is also very different

from the shown in the previous datasets. Patino et al. [8] and

Prasad et al. [9] have presented more challenging datasets,

with cameras mounted on ships that cause background vari-

ations, although, the perspective in images like presented in

Fig. 1(b) is still quite different from aerial images’ case. As

shown in Fig. 1(c), there are challenges like the small scale,

glare and movement of background that are characteristic of

airborne images.

Given that most images online do not answer our re-

quirements, in this work we present a significant dataset

[10] to enable more reproducible and comparable research

for aerial surveillance in maritime surveillance scenarios. To

our knowledge, this is the first publicly available dataset

of video sequences in a maritime surveillance scenario,
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(a) (b) (c)

Fig. 1. Examples of typical images of boats for (a) Imagetnet [1], (b) VIS [9],
and (c) our dataset [10].

captured by a small unmanned aircraft. The dataset is

available to the scientific community upon request, see

http://vislab.isr.tecnico.ulisboa.pt/seagull-dataset/ for instruc-

tions and additional example images. After access is granted,

the videos sequences (and ground truth labels) can be easily

browsed, previewed or downloaded.

A. Contributions

The main contribution of this paper to the community is

the introduction of a public dataset of thousands of images

captured from an airborne platform in maritime surveillance

scenarios in very diverse conditions, and the evaluation of

the performance of the state-of-the-art algorithms on typical

maritime scenarios.

Typically, authors that suggest techniques in this context

use their own private datasets. This, therefore, hampers the

reproducibility of the methods and the comparison with new

ones. Additionally, collecting and labeling these datasets is a

laborious task, that might be very difficult and/or unsought

amount of work for some authors. Consequently, this might

preclude some groups to work on some of these techniques.

To mitigate this problem, we propose a new tool to facilitate

the labeling task and make this database available to be used

by the scientific community.

Another very important factor is that many of the current

state-of-the-art methods for detection and tracking are based

on machine learning techniques, which require large amounts

of data for the training stage. Our dataset not only presents

a considerable amount of samples but those samples are

representative of challenging situations, close to real world

scenarios, with a strong presence of glare, wave crests, wakes,

variation of perspective, and with objects of interest of dif-

ferent types, scales and shapes. Some of these characteris-

tics are presented in Table I, in the figures throughout the

paper, in particular Fig. 2, and on the database webpage

(http://vislab.isr.tecnico.ulisboa.pt/seagull-dataset/), to which

we add the following:

• more than 150000 images were captured;

• objects of interest were labeled by a human operator in

thousands of images;

• images were captured using different types of sensors, in

particular visible light, Long Wave Infra-red (LWIR) and

hyperspectral sensors.

• different types of objects of interest were observed,

namely cargo ships, smaller boats (27 meters long),

sailing yachts, life rafts, dinghies and a hydrocarbon slick.

We also present some results from state of the art algorithms

and from our own maritime oriented algorithms to serve as a

baseline against which the scientific community can compare

their own developed methods.

Given the aforementioned considerations, the main ad-

vantage of this work is the introduction of a dataset that

enables authors to work with a freely available and annotated

dataset, without the need of collecting and labeling the images

themselves. Also, this work provides a new labeling tool and

an evaluation baseline using standard metrics against which

new methods can be compared.

B. Outline of the paper

This work is organized as follows: in Section II, we describe

the aircraft and cameras used to capture the dataset as well

as the scenarios that were considered; Section III presents

the most relevant data about the sequences and the labeling

process; Section IV contains information about the evaluation

process. The results for detection and tracking are presented in

Section V and finally, Section VI concludes the present work.

II. ACQUISITION SETUP

A. System architecture

1) Aircraft: The aerial platform used to build these se-

quences was an Alfa Extended, a UAV designed, built and

operated by the Portuguese Air Force Research Center for

research purposes, depicted in Fig. 3. It has a wingspan of 3.5

meters and a maximum take-off weight of 25 kg. This UAV

can carry up to 10 Kg in payload and has an endurance of 8

hours. The propulsion is supplied by a gas engine, which is

also connected to a generator that provides electrical power

to all onboard systems. We use a commercial off-the-shelf

autopilot (Piccolo II) that takes care of the low-level control,

has a GPS receiver and internal sensors to determine its

position, orientation and air speed. The autopilot also uses an

additional Differential GPS module that increases navigation

precision and allows automatic landings. To communicate with

on board devices, the autopilot uses several serial ports and a

UHF data-link to communicate with a ground control station.

2) Cameras: While designing the UAV, one of the priorities

was the use of electro-optical sensors and therefore the aircraft

has a dedicated bay and an unobstructed view. This allowed

us to use both fixed and steerable cameras.

Because we wanted the dataset to be diverse, i.e., to contain

different operation conditions and different objects, we have

also used cameras with different characteristics. The major

distinction between cameras was their spectrum, in partic-

ular: we have used two cameras that operate solely in the

visible spectrum, one LWIR camera, one camera with one

CCD receiving visible spectrum radiation and another CCD

capturing Near Infrared (NIR) and finally one hyperspectral

camera sensitive to radiation in the NIR and visible spectrum.

Only one of the used cameras was steerable, all rest of

cameras were rigidly mounted on the aircraft. Considering the

fixed cameras and with the exception of the hyperspectral,

they were mounted on the airframe and were pointing 90◦

left of the aircraft and approximately 45◦ from the horizontal
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Fig. 2. Example images of the sequences in Table I: (a) seq01, (b) seq02, (c) seq03, (d) seq04, (e) seq05, (f) seq06, (g) seq07, (h) seq08, (i) seq09, (j)
seq10, (k) seq11, (l) seq12, (m) seq13, (n) seq14, (o) seq15, (p) seq16, (q) seq17, (r) seq18 and (s) seq19. The images show a diverse set of examples of
the difficulties particular to the maritime environments, namely: Sun reflections (b), (e), (f), (g), (i), (j), (o), (q), and (r); Wakes (b), (h), (o), (p), and (q);
Multiple boats (a) (b), (d), (e), (f); Different visual aspect of the boat after rotation - compare (o) with (p); Scale variations - compare (m), (n) with (o), (p);
Illumination variations - compare (a) with (b) or (o) with (p) ;

Fig. 3. Alfa Extended, a small UAV designed and manufactured at the
Portuguese Air Force Research Center.

plane, as represented in Fig. 4. The hyperspectral was pointing

downwards, with its optical axis aligned with the vertical, as

shown in Fig. 5. The steerable camera was mounted on the

bottom of the aircraft and had the ability to pan, tilt and zoom.

As stated previously, we have used two visible spectrum

cameras. The simplest was a GoPro Hero 2. It has a 1/2.5”
visible light CMOS sensor with a field of view of 170◦ and

captured video with a resolution of 1920× 1080 pixels. This

camera works independently of the onboard systems, which

makes it quite flexible to use but its images can only be
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Fig. 4. Front (a) and top (b) views of the orientation of fixed cameras (with
the exception of the hyperspectral camera).

(a)

(b)

Fig. 5. Front (a) and side (b) views of the orientation of the hyperspectral
camera.

processed off-line. The other visible spectrum camera was Tase

150, equipped with a 1/4” CCD sensor that captured NTSC

video, typically with a horizontal field of view of 42.2◦. This

camera was mounted on a structure that was controlled by

the autopilot and its analog video output was acquired by the

onboard computer.

The LWIR camera that was installed was a GOBI 384.

This camera is sensitive to radiation with wavelengths from

8 to 14 µm, which corresponds to most of thermal radiation

emitted by bodies at ambient temperature. This camera has

an ethernet interface that is connected directly to the airborne

systems. The other camera with that kind of interface is JAI

AD-080. This camera has two CCD, one that receives visible

light and another that receives NIR. Both sensors have a

resolution of 1024× 768 pixels.

The hyperspectral camera, produced by Rikola, is sensitive

to the visible and the near infra-red frequency bands and can

acquire a full image frame for a given frequency in a single

time instant. Multiple frequencies are swept in time. Notice

that, due to the UAV motion, the images obtained for different

frequencies become misaligned. Up to 25 preprogrammed

Fig. 6. Sweep order of the frequencies for the hyperspectral camera. The
camera acquires sequentially following the bin number but the frequency (and
the wavelength) values jump up and down.

frequency bands can be acquired using a frame rate up to one

full spectrum image per each two seconds (0.5 Hz). Due to the

inner complexity of the camera, the sweep of the frequencies

is not monotonic, meaning that the sweep is not performed in

an orderly fashion and jumps back and forward between the

25 different frequencies, as shown in Fig. 6.

There is no interface available for the Rikola camera to

be controlled by the onboard systems. However, the camera

can be pre-programmed to automatically record data into a

memory card after an initial time delay. The camera was set

and activated before each flight. The same camera parameters

were used for all flights. As shown in Fig. 6, wavelengths

between 500 nm and 900 nm were acquired.

B. Proposed scenarios and applications

The main usage for the aforementioned system is maritime

monitoring. This kind of missions involve scanning large areas

of the ocean, that implies long flights which are answered by

our aircraft’s endurance. Given that in most of the flight’s

duration there is no significant occurrence, flights become

extremely dull for the crew but having an unmanned aircraft

allows for the rotation of crews. In this scenario, we consider

mainly two broad type of tasks: surveillance/search and en-

vironmental monitoring. The first kind of tasks encompasses

control of fisheries, detection of smuggling and search of boats

in distress. The other kind of activities includes mostly the

detection of pollutant substances in the water.

For surveillance missions, we observed different types of

objects, spanning from life rafts to cargo ships. The life rafts

that were observed had a capacity for 20 people and were

3.7 meters long. The medium size boat that is visible is a

patrol boat, 27 meters long. In the sequences, this boat is either

stopped or moving at a speed between 4 and 18 knots.

To have an acceptable compromise between the area covered

and the perceived detail, the flight’s altitude for surveil-

lance/search is in the range of 150 and 300 meters above the

ocean surface. Because different lighting conditions demand

different technologies, we foresee the use of visible spectrum

and LWIR cameras that allow both day and night operation.

As mentioned before, these cameras are oriented as shown

in Fig. 4, that attempts to capture not only objects near the

aircraft with detail but also to detect other at a greater distance.
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To simulate environmental monitoring missions, we flew at

an altitude of 100 meters over fish-oil spills dropped to the

sea. The fish-oil was selected among several candidates since

it presented the closest pattern to the regular boat oil spills and

its usage did not pose any particular risk to the environment

[11]. In this case, we have used the hyperspectral camera to

acquire images.

III. SEQUENCES AND GROUND TRUTH LABELING

PROCESS

This section describes the method and the developed tool

to annotate the video frames with the ground truth bounding

boxes and presents information about the video sequences

contained in the dataset.

A. Method used

The labeling process consists of marking the position and

size of all objects in the images. This is represented as the top

left coordinates of a bounding box together with its width and

height. Each label corresponds to the smallest rectangular box

that contains the object. These rectangles are called bounding

boxes and, because they represent the real position of the

objects, their set is also called the ground truth. One label is

represented by the two coordinates of the top left corner of the

bounding box, by its width and height and by an identification

number for the object (ID). In this way, multiple objects per

image can be accommodated.

The labels have two different purposes. One is to serve as

a reference to be used by the training or learning phases of

some algorithms, when they learn what an object looks like.

These algorithms adjust themselves based on the contents of

the bounding boxes. The second purpose is to serve as a com-

parison reference to evaluate the algorithms. By comparing

their object output position with the positions of the bounding

boxes an error of some sort can be computed in order to

evaluate the algorithm’s performance. This means that it is

important that these labels are as accurate as possible and

this can only be achieved if they are marked manually by a

human. The next subsection will describe a tool to facilitate

this manual work.

B. The labeling tool

The manual labeling of images is a slow and cumbersome

process. There are some labelling tools developed to facilitate

this task. One of the most used is [12], a Matlab software

package that presents a graphical user interface where users

can select and adjust the bounding boxes using a mouse. In

periods where the target performs roughly linear trajectories,

the user can select just the initial and final bounding boxes

the software performs linear interpolation. The user then can

adjust each individual bounding box in the interpolated frames

using the user interface. Another famous tool is VATIC [13],

an online video annotation tool for computer vision research

that crowdsources work to Amazon’s Mechanical Turk. It has

only been tested on Ubuntu with Apache 2.2 HTTP server

and a MySQL server. It also presents interpolation functions

(a)

(b)

Fig. 7. Examples of the automatic generation of bounding boxes by the label-
ing tool. (a) Using simple interpolation. (b) Using search after interpolation.

to simplify the the labelling of sections of the video where the

movement is linear.

Both [12] and [13] labelling tools present appealing graph-

ical interfaces and general purpose interpolation abilities.

However, the requirements for particular software tools and

operating systems of these tools make them platform depen-

dent and may prevent their use by some person that wants to

work on its own laptop. Furthermore, the interpolation abilities

of the existing tools are general purpose and have trouble

dealing with our dataset because of the vibrations and constant

shaking of the UAV and its cameras.

A new labeling tool was created to overcome these issues.

It provides means to speed up the labeler’s work and to

facilitate it as much as possible, without compromising the

labeling quality and ensuring that all of the resulting labels for

every frame are in fact manually created, or at least manually

verified. Aiming at fast execution and immediate response to

user commands, the tool was developed in C++ and only uses

the OpenCV library [14] in order to reduce its dependencies

and increase its portability1.

The tool mostly uses keyboard input. The shortcut keys

are arranged so that every operation is the most intuitive

as possible and requires the least number of key presses as

possible (ideally only one).

The tool also provides means to automatically create bound-

ing boxes based on the ones already marked by the user. This

includes searching for the object’s image in the next frame and

interpolating the bounding boxes positions between separated

frames (Fig. 7(a)). It can be useful in cases where the object

moves linearly across the image. Circular motions can be sub-

divided into smaller linear sections. The interpolation can also

be combined with a local search around the interpolated box

position in order to compensate for small camera movements

and for movements that are not strictly linear (Fig. 7(b)).

The boxes created automatically are marked as temporary

(yellow color boxes in Fig. 7). The user is then forced to

go through all of them in order to adjust and mark them as

final (green color boxes). If the temporary bounding boxes are

already close to the desired positions, then a few keystrokes by

the user to adjust them is all that is required. In practice, most

1See https://github.com/ricardoarib/labeling tool for the source code.
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temporary bounding boxes only require small adjustments or

do not require any adjustment at all. Nevertheless, the user is

still obliged to review them all.

In this way, the tool makes most of the work for the user

and still ensures that the labeling is in fact done manually. The

tool supports the independent labeling of multiple objects in

the images.

C. Sequences statistical data

The dataset presented in this work is composed of 19

video sequences with different properties. In particular, the

sequences have different resolutions and durations, the objects

are observable for different periods in each sequence and there

is a different number of objects in each sequence. Additionally,

the sequences were obtained with radiation from different

parts of the electromagnetic spectrum. These characteristics

are presented in the left part of Table I.

Given the different flight altitudes and camera’s perspective,

the size of the observed objects varies significantly between

different sequences and sometimes in the same sequence. To

quantify these variations, Table I also presents the properties

of the bounding boxes that encompass the object of interest.

These bounding boxes correspond to rectangles, so the aver-

age, minimum and maximum size and the standard deviation

for the width and height are demonstrated.

The sequences were captured in several scenarios, to im-

prove the robustness of the detectors and trackers. To achieve

this, an array of vehicles were used. This set of vehicles was

composed by a 27 meters long patrol boat, 90 meters long

cargo ships, yachts, Rigid-Hulled Inflatable Boats (RHIBs),

life rafts and buoys. In the last column of the mentioned table,

the type of objects in each sequence is provided.

IV. PERFORMANCE EVALUATION METHODS

Our dataset not only includes the images and the annota-

tions, introduced by a human, that are relevant for the training

but we also present the evaluation frameworks that were used

for two crucial tasks in surveillance: detection and tracking.

In this section we detail the metrics used for the evaluation

of the detection and tracking algorithms, which follow the

standard methods currently used in the state-of-the-art.

A. Detection Evaluation Metrics

Traditionally, detection is considered as one of the first

operations in a surveillance application. In the case of being

automated, this is the cornerstone for all other higher level

tasks like tracking or fine-grained classification. In the case

of maritime monitoring using airborne images, the detector

importance is two fold. On one hand, the detector should be

sensitive enough to detect even in a very short observation

interval. On the other hand, it should be trustworthy and not

overwhelm the operator with false positives (FPs). We will

detail how we evaluate these two aspects.

To access the effectiveness of the methods, we have adapted

the framework presented by Dollar et al.[12]. In the indicated

work, a detection is considered as being valid if its bounding

box overlaps significantly with a ground truth bounding box.

This overlap is measured with the intersection over union

(IoU) calculated as

IoU =
area{D̄t

∩Gt}

area{D̄t ∪Gt}
. (1)

Dollar et al. require IoU to be larger than 50% to consider a

detection as valid. In our experiments, because the bounding

boxes for ground truth and detections are small when com-

pared with the image, any small error in localization or size,

has a big impact on IoU. Requiring the IoU to be larger than

50% in small object detections will result in many objects

being reported as false positives when they actually are true

positives, thus providing biased evaluations of the detection

algorithms. To make the evaluation fairer for the conditions of

our dataset, we have tested several threshold values to match

a detection to a ground truth, in particular we have evaluated

using IoU > 0%, IoU > 10% and IoU > 20%.

Having defined the matching method, we use two main

metrics to quantify the performance: Precision and Recall.

The first measures if the detections being produced are

relevant to the problem. Detections can be aggregated into

correct (true positive (TP)) and incorrect detections (false

positive (FP)). This metric is computed as the ratio of the

correct detections over the complete set, i.e. Precision =
# TP/ ( # TP + # FP ) .

Recall gauges the portion of TP over the entire set of ground

truth labels (TPs and false negatives (FNs)) and is calculated

as Recall = # TP/ ( # TP + # FN ) .

The mentioned metrics characterize a given operating point

of an algorithm but many detectors provide a score for its

output and therefore the user can select the threshold to

consider a detection. This can create an infinite number of

operating points. To overcome this issue, we plot Precision-

Recall (PR) values by ranging the detection score’s threshold

from the minimum to the maximum. Operating points that cor-

respond to the minimum score typically result in high Recall.

Conversely, points corresponding to high scores usually result

in high Precision.

Despite the qualities of a PR curve p(r), when comparing

several detectors it is useful to have a quantity that encapsu-

lates the overall performance. One common metric is to use

the Mean Average Precision (mAP) that is defined as

mAP =

�
1

0

p(r)dr (2)

and may be approximated by the Area Under the Curve (AUC)

which is computed as the sum of Precision p(k), at every

possible threshold with the index k, times Recall’s variation

∆r(k) between these points.

AUC =
N�

k=1

p(k)∆r(k) (3)

B. Tracking Evaluation Metrics

For the purpose of tracking, it is important to evaluate how

well the system can keep track of the object without losing
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TABLE I
VIDEO SEQUENCE AND OBJECTS CHARACTERISTICS

objects width objects height

Name Spectrum Resolution Frames Labels Objects Ave. Range Std. Dev. Ave. Range Std. Dev.
Type of

boat/object

seq01 Vis. 640 ∗ 480 102707 891 4 15 11-91 6 26 11-91 17

Patrol,
RHIB,
life raft

seq02 Vis. 1024 ∗ 768 16369 19621 2 21 4-84 18 18 2-63 14
Patrol,

Life Raft

seq03 LWIR 384 ∗ 288 7090 1764 1 38 9-56 12 24 3-46 12

seq04 Vis. 1920 ∗ 1080 300 519 2 34 56-69 28 20 6-34 8
Patrol;
buoy

seq05 Vis. 1920 ∗ 1080 1080 2160 2 32 6-78 26 26 6-34 17
Patrol;
buoy

seq06 Vis. 1920 ∗ 1080 4860 8426 2 36 6-128 31 35 2-100 24
Patrol;
buoy

seq07 Vis. 1920 ∗ 1080 720 739 3 13 5-16 1 24 5-33 6
Sailing
yacht

seq08 Vis. 1920 ∗ 1080 1440 236 3 15 6-5 5 12 5-17 3 Yacht

seq09 Vis. 1920 ∗ 1080 480 358 1 45 14-52 5 19 13-23 2
Yacht;
Patrol

seq10 Vis. 1920 ∗ 1080 420 378 1 29 3-36 5 15 9-20 2 Patrol
seq11 Vis. 1920 ∗ 1080 5880 5185 1 46 12-94 17 44 4-75 15 Patrol
seq12 Vis. 1920 ∗ 1080 1276 1276 1 26 2 11 3 Cargo
seq13 Vis. 1920 ∗ 1080 2251 2044 2 18 9-41 4 20 6-33 5 Cargo
seq14 Vis. 1920 ∗ 1080 506 1008 2 27 8-60 17 16 7-34 9 Patrol
seq15 Vis. 1920 ∗ 1080 1071 941 1 97 21-156 34 45 21-70 7 Patrol
seq16 Vis. 1920 ∗ 1080 1401 1237 1 111 4-216 52 51 8-84 13 Patrol
seq17 Vis. 1920 ∗ 1080 751 504 1 47 18-81 15 40 16-63 9 RHIB
seq18 Vis. 1920 ∗ 1080 2251 1121 1 45 19-69 11 38 12-59 9 RHIB

seq19 Hyperspec. 1024 ∗ 648 900 (unavailable)2 2 - - - - - -
Patrol

Pollutant

it. The tracker is given the initial position of the object, either

manually or by some detection system, and autonomously tries

to follow the movements of the target object.

Different metrics are required for the tracking case and we

propose the use of the Object Tracking Benchmark (OTB) [15]

framework for this dataset. This methodology evaluates the

tracking methods by computing Precision and Success plots

of the tracking under two different initialization strategies

denoted Temporal Robustness Evaluation (TRE) and Spatial

Robustness Evaluation (SRE).

The Precision plot shows the percentage of frames whose

Euclidean distance between the centers of the detection and the

manually labeled ground truths is lower than a given threshold.

The Precision threshold varies from 0 to 50 pixels with a step

of 1 pixel. The score chosen to rank the trackers is Precision

value for a threshold of 20 pixels as suggested by [15].

The Success plot evaluates the bounding box overlap of the

detection with the ground truth as defined by (1). It shows

the percentage of frames whose bounding box overlap ratio

IoU is higher than a given threshold from ratio values of 0 to

1, where 1 means perfect match of the detection and ground

truth and 0 meaning lost target. To rank different algorithms,

the AUC of each Success plot is used.

The Temporal Robustness Evaluation consists in initializing

the trackers at different frames, not just the first, and running

them until the end of the sequence. Each sequence is evaluated

by initializing in 20 different frames. The initial frames are

chosen by starting with the first frame of the sequence and

stepping through them at a regular interval. The step is

approximately the number of frames of the sequence divided

by 20.

The Spatial Robustness Evaluation consists in introducing

error in the initialization by shifting the bounding box by 10%

of the target size in 8 different directions and scaling it by 0.8,

0.9, 1.1 and 1.2 of the ground truth size. This results in 12

different initialization.

These evaluations are pertinent because in a real world

scenario the trackers would be initialized with a vessel detector

that is likely to introduce error in the initialization.

V. BENCHMARK RESULTS FOR THE DATABASE

In this section, selected detection and tracking methods

are applied to the dataset sequences. These methods were

developed by the authors in prior research [11], [16], [17],

[18] and their results are compared with other state-of-the-

art approaches. The results define a baseline performance of

detection and tracking methods to be used as reference for

future research.
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TABLE II
EXPERIMENTS PERFORMED FOR BENCHMARKING

Experiment type Camera spectrum Sequences used

Boat detection Visible
seq01, seq02, seq06, seq12,
seq13, seq14, seq15, seq16

Boat tracking Visible seq01, seq02

Pollutants detection Hyperspectral seq19

Three different problems are considered: the detection of

boats, where the purpose is to identify if there is a boat in the

image and where it is located; the tracking of the boat, where

the movement of the boat follows an initial detection; and

lastly the detection of pollutants using hyperspectral images.

A summary of all experiments identifying the video sequences

used as well as the types of cameras used is shown in Table II.

A. Detection results

Four detection algorithms have been applied to the visible

spectrum sequences, to create baseline results. The methods

that were used, differ in its nature with two unsupervised

and two supervised methods. The supervised methods need

to be trained and therefore some sequences have been chosen

as training set and others as testing set. We have used all

the frames present in sequences seq01, seq12, seq14 and

seq15 for the training stage, with 10% of those images used

as validation set. For the testing stage, we have considered

different sequences, to avoid having very similar images in

the train and test set, hence we have used all the frames in

sequences seq02, seq06, seq13 and seq16. Among the test

sequences, we have used seq02 and seq06 to carry out a

qualitative evaluation and for a quantitative evaluation, we

have used seq13 and seq16.

The first unsupervised method that was tested was Image

Signature Saliency Method [19]. Using this standard saliency

method without any modifications, resulted in very poor results

and, therefore, its results are not reported. This fact supports

the existence of challenging conditions in this dataset and

indicates that specialized detection methods are needed. The

second detection technique that we have tested is denomi-

nated as Blob Algorithm [20]. This method is composed of

three stages: Vessel Detection, Spatial Detection and Time

Consistency. Vessel Detection first looks for salient pixels,

i.e. with high intensity and color features, creating a binary

map where zero represents background and one represents

areas of interest. Spatial Detection creates regions labeled as

boat or background, by applying morphological operations to

the binary image and rules regarding the size and position

of the regions, to eliminate large regions or regions adjacent

to the image border (typically caused by sun glare and sky,

respectively). Both the morphological operations and the rules

must be tuned for specific scales of the boat and the glare.

The last stage (Time Consistency) creates a buffer of several

time instants and only blobs that are persistent through time

are considered as valid.

2Due to the difficulty to visually identify the oil spill, there is no ground
truth available for the hyperspectral sequence.

The third method, dubbed Blob+CNN [16], is partially

based on Blob Algorithm and partially on Convolutional Neu-

ral Networks (CNN). This method uses the first stage of the

Blob Algorithm, to create a binary map identifying possible

regions of interest. Afterwards, these regions are cropped and

used as object proposals. These proposals are then provided to

a standard CNN to be classified as boat or background. This

method is similar to R-CNN [21] as it creates patches of im-

ages that are fed into a neural network. However, Blob+CNN

was designed to be deployable on embedded platforms, which

has enforced the creation of a small number of proposals. The

network that is used is alexnet and was retrained with images

from the already mentioned training sequences.

The fourth method was detectnet with Multiple Hypothe-

sis Tracker (MHT) [17]. This method uses a convolutional

network (inspired by the ideas presented in [22]) to generate

detection bounding boxes and then used a Multiple Hypothesis

Tracker to associate detections in successive time instants. The

detection network creates a grid that indicates if a given region

of the image is a boat or background and also computes a

regression for the bounding box containing the boat. If a boat

is present in multiple cells of the grid, the bounding boxes

are merged. In this case, the goal of the MHT is to verify

time consistency by computing the probability of a given set

of consecutive detections being generated by a real boat.

In Fig. 8, we have two sequences and three IoU con-

ditions. Note that the IoU does not have influence on the

quality of the detections bounding boxes but rather on the

reported performance. With the least demanding condition

(IoU > 0), any overlap larger than 0 between ground truth

and detection bounding box is enough to consider a detection

as correct. In this case, almost every detection is considered

as positive detection which causes the Precision to be close

to 1. Nonetheless, there are some time instants where no

detection is produced and precludes Recall from attaining 1.

With these ideas in mind, we verify that the Blob Algorithm

fails to produce the same amount of bounding boxes (even

with relaxed location and size restrictions) as the other two

methods. In the two other evaluation conditions (IoU > 10 and

IoU > 20), the location and the size of bounding boxes must

be more adjusted for a detection to be considered as correct.

With these conditions, the Blob+CNN method achieves a high

Precision at the cost of only accepting detections with a very

high score3 and discarding many lower score detections. Con-

sequently, a low Recall is obtained by this method. Detectnet

with MHT maintains a higher Precision without sacrificing as

much Recall. This is the algorithm that gets closer to the ideal

condition (Precision = 1 and Recall = 1) and this holds true

for different evaluation criteria, i.e. for IoU > 0, IoU > 10
and IoU > 20 and also for both sequences (seq13 and seq16).

The poorer performance of Blob Algorithm is caused by

the lack of discriminative power of the vessel detector stage

to distinguish between boats and distractors. This compels this

stage and the following to discard many occurrences (some of

which are correct), otherwise the number of false detections

3This score is the ”confidence” that a detector has in each detection, as
mentioned in subsection IV-A.
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Fig. 8. Precision-Recall (PR) curves obtained with seq13 (top row) and seq16 (bottom row). The results for each sequence were evaluated with three
conditions: IoU > 0%, IoU > 10% and IoU > 20%. Each sequence was processed with three different algorithms (detectnet with MHT, Blob+CNN and
Blob Analysis). The first two methods have a variable operating point, which resulted in PR curves and have the AUC presented in the legend. The Blob
method only has one operating point, which results in only one Precision-Recall condition.

(a) (b) (c) (d)

Fig. 9. Example of bounding boxes obtained with detectnet+MHT. In (a) a life raft and in (b) a patrol boat with a lift raft are detected, despite the small
size and the presence of glare and sky on the images. In (c) the patrol boat is detected inside an area with glare. Here, the bounding box is not completely
adjusted to the boat and is one of the cases that is considered as false positive when the evaluation criteria is more demanding (IoU > 10% and > 20%). In
(d) the boat is detected with an appropriate bounding box and no false positives are present on the image.

would be overwhelming. Even though Blob Algorithm and

Blob+CNN share the same approach to create the initial blobs,

there is a significant difference in the capability of the CNN to

separate distractors from boats, which explains the difference

between the two methods. Nonetheless the first stage is tuned

for a given scale and therefore the size of the bounding boxes

is not perfectly adjusted to the varying size of the objects.

The mismatch in size creates more false positives as the

overlapping criterion gets more demanding and is especially

severe in seq13 that has a smaller scale. Unlike typical scoring

functions, which assign high values to true positives and

low values to false positives, on some occasions, Blob+CNN

incorrectly assigns high values to TP and low values to FP.

This causes the initial decrease followed by an increment

of the Blob+CNN plot in Fig. 8(b) and Fig. 8(c). In detectnet

with MHT, only the objects’ minimum size is specified and the

merging of bounding boxes allow objects with bigger size to

be detected. Furthermore, the coherence between consecutive

detections is verified using the MHT, which proved to discard

most spurious events like momentary glare or wave crests.

Additionally, to further test the best approach, we have also

tried this method in sequences seq06 and seq02. In these

sequences, the detection of buoys and life rafts, as presented

in Fig. 9(a) and Fig. 9(b), is only occasionally successful.

Another very challenging condition is when the boats appear

inside regions with glare, as presented in Fig. 9(c). Some

detection results are shown in Fig. 9. These images correspond

to very challenging conditions. In most of these images, the

scale of the object of interest is small when compared to the

image and there is strong glare.

B. Tracking results

Videos from this database were used to evaluate different

state-of-the-art tracking methods using the framework pro-
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posed above. The tested trackers were ASMS [25], DSST [26],

KCF [27], CF2 [24], SRDCF [28], MUSTer [29], MEEM [30],

MDNet [23]. These methods are generic and do not take into

account the specific difficulties that these maritime scenario

images impose and new methods [18] were developed, iden-

tified as OURS and OURS CNN and which we will describe

next, aiming at this kind of scenarios. The new methods are

based on kernelized correlation filters.

Correlations filters are templates specially tuned to a partic-

ular image pattern. The correlation of this template with the

new image x produces a response map y:

y = x ∗ h−, (4)

where h− is the reflection in both coordinates of the patch

and ∗ is the convolution operator. The location corresponding

to the maximum value of the response map will indicate the

new position of the target. To improve the computational

efficiency of the filter, the convolution is computed in the

Fourier domain:

y = F−1(x̂� ĥ∗), (5)

where the hat symbols represent the discrete Fourier transform

of the vectors, F−1 represents the inverse Discrete Fourier
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Fig. 10. Precision plots for the (a) SRE and (b) TRE from the OTB framework
[15]. The values on the legend correspond to the Precision for a location error
threshold of 20. Note that the colors represent the ranking and not the different
trackers. The same tracker can have different colors in different evaluations
depending on its ranking (e.g. red corresponds to the first place, green to the
second place and blue to the third place).

Transform, � represents the element-wise multiplication, and

the superscript ∗ indicates the complex conjugate.

The tracker uses a patch x of the image containing the object

to learn the filter coefficients h so that the filter produces a

particular response y having a peak at the center of the patch.

Typically, y is defined as an isotropic Gaussian function with

a small standard deviation. A simple way to compute an exact

filter is proposed in [31] using the Fourier domain:

ĥ∗ =
ŷ

x̂
(6)

The filter performance can be improved by using a ker-

nelized version of it that maps the image into a higher

order space. Taking advantage of the properties of circulant

matrices [27], the filter computation can be expressed in the

following computationally efficient form

ĥ =
x̂∗

� ŷ

x̂∗ � x̂+ λ
, (7)

where the division, as well as all other operations, is element-

wise.

The new methods we propose update the correlation filter

for each new image in order to comply with the variations of
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Fig. 11. Success plots for the (a) SRE and (b) TRE from the OTB framework
[15]. The values on the success plots legend correspond to the areas under the
curves (AUC). Note that the colors represent the ranking and not the different
trackers. The same tracker can have different colors in different evaluations
depending on its ranking (e.g. red corresponds to the first place, green to the
second place and blue to the third place).
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(a)

(b)

Fig. 12. Frames from the data set with the results, as bounding boxes, of some of the best performing methods: both our methods [18] (OURS as green and
OURS CNN as red), MDNet [23] (black) and CF2 [24] (blue). Two examples are shown. Example (a) uses seq02 and example (b) uses seq01.

the boat’s appearance over time, thus making the algorithms

robust to rotations of the boat relative to the camera point of

view or to illumination variations like when the boat encoun-

ters sun reflections. However, this introduces drift problems

and the algorithms tend to lose the target after some time.

To avoid drift effects, an additional adjustment based on blob

analysis was introduced, being only active if the conditions

are right.

Before the detection of the connected components, usually

referred to as blobs, the image patch of interest has to be

segmented. We adopt a binarization approach via the Otsu’s

method [32] to separate bright and dark parts of the image

that, in principle, will correspond to the boats and the ocean

surface, respectively. An erosion step then isolates the vessel

from nearby distractors like wakes, or other vessels, and also

removes some noise originated from waves and sun reflections.

The segmented pixels are then grouped in blobs that cor-

respond to the maritime vessels. However, the background

clutter (waves and wakes) and the sun reflections can interfere

with the segmentation. To circumvent this problem, a set of

heuristics were defined to determine if the conditions allow

for the track correction. If a) no blob touches the border of

the region of interest (ROI); b) the number of blobs is smaller

or equal to a defined threshold Tn and c) the blob has an

area larger than a second threshold Ts, then the conditions are

favorable to correct the track. The first and second conditions

are used to detect the presence of sun reflections or background

clutter as boat wakes or waves, and the third is used to filter

some noise and boat wakes that might go through the two first

filters. If the conditions are met, then a blob is chosen using

a nearest-neighbor approach with regard to the latest tracking

position which is then updated to the same position as the

center of that blob.

Also, instead of using the images x directly, the methods

use features extracted from those images. These can either

be the HoG features, as used in method OURS, or be CNN

features, as used in method OURS CNN.

The new methods can achieve better tracking performance

as is shown in Fig. 10 and Fig. 11 using the metrics defined

in the previous section for tracking. Also, Fig. 12 shows some

examples of detections marked on the images. The example

in Fig. 12(a) is a case of success for both our methods given

that the track is still on the target after 4383 frames (when

the target leaves the camera’s field of view), even after going

through a region with intense sun-reflections multiple times.

The other top performing algorithms lose the target much

earlier. Fig. 12(b) shows a case of failure for our method

using HoG features, where the track gets lost following the

wake of another target. Nevertheless, our method using CNN

features can overcome this problem given its capability to

better discriminate the target from the wakes.

Full details about the new tracking algorithms and a detailed

analysis of the results shown here can be found in [18].

C. Hyperspectral results

The analysis of hyperspectral images captured revealed

that the spectrum of the image is different for the oil spill

when compared to the spectrum of the unpolluted water. This

suggests that spectral based methods should be successful to

identify the oil spill. However, since there is misalignment of

the images for different spectral bands, state of the art methods

to analyse the hyperspectral content, such as spectral signature

matching [33] or end-member extraction methods [34] cannot

be applied in a straightforward manner.

We proposed a new method [11] based on simple logic rules

and using morphological transforms based on the erosion and

dilation operators [35]. Three frequency bands, not very far

apart in acquisition time, were identified to contain information

about the presence of an oil spill. The spectral signature is

simply the level of two of them being higher than the third.
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(a) (b) (c)

Fig. 13. Oil spill detections using hyperspectral images. (a) Shows the oil spill. (b) Shows the detection. (c) Shows the detection when in the presence of a
boat. The images in (a) and (b) have their luminance increased in order for the oil spill to be visible while the image in (c) is shown in its original luminance.

From the normalized level comparisons, we get two blobs

that are slightly eroded to clear noise. Afterward, they are

dilated by an amount large enough so that the two blobs

can still overlap despite the misalignment of the images. The

intersection of booth blobs is considered to be an area of

positive detection of the oil spill. Boats and other objects,

which have a much stronger luminance when compared to

the oil, are eliminated from the detections using an additional

threshold rule.

Fig. 13(a) shows an image for one frequency channel where

the oil spill is present. The image luminance was increased

in order for the spill be clearly visible. Fig. 13(b) shows the

detection of the spill area by the new method. Fig. 13(c) shows

the detection for another image where a boat is also present. In

this case, the normal luminance is shown. We can see that the

oil spill is detected and not the boat, showing the robustness

of the method to the presence of other objects in the water.

More details about the oil spill detection method can be

found in [11].

VI. CONCLUSION

In the present work, we have described a dataset of properly

labeled images, captured by a small aircraft in maritime

surveillance scenarios. To the best of our knowledge, this is

the first publicly available dataset in such scenario. Given that

many of the current computer vision and pattern recognition

methods (such as deep learning) are data-driven, we believe

that this is a strong contribution to allow the training of new

methods.

To provide more context to the imagery in the dataset, the

conditions and the system were described. Also, we described

the content information of the labels and introduced a new

labeling tool that allowed us to annotate so many images.

Using standard evaluation frameworks over this dataset

data, we also present some baseline results for state of the

art detection and tracking methods, and for some methods

developed for maritime scenarios by the authors. In this way,

a starting point is established as a baseline for the comparison

with any future methods.

The results for an hyperspectral method, which to our

knowledge is unique for these scenarios, are also included.

For future work, we will proceed in two directions. In one

direction we will address the use of the dataset for applications

beyond detection and tracking, for example spatiotemporal

event detection (boats approaching/departing, boats navigating

side by side, boats driving fast), and exploit recent algorithms

on one/zero shot learning of object categories/events. On the

other direction, we will enrich the dataset with more labels to

describe the context of the frame (with sun glare, with wave

crests, etc) which will allow discriminating the performance

of methods across different contexts. This will allow a finer

analysis of the advantages and disadvantages of algorithms in

the specific challenges of maritime scenarios.
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