
Description and Recognition of Activity
Patterns Using Sparse Vector Fields?
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Abstract. Far-field activities represented as time series or trajectories
can be summarized in compact representations of frequent patterns. Pop-
ular representations such as clustering or probabilistic modeling of tra-
jectories often do not inform about both velocity and direction of motion,
which are by definition visually and quantitatively embedded in vector
fields. However, a common use of vector fields may dismiss information
about forbidden areas, or regions with concurrent activity patterns. To
address this problem we present a non-iterative layered vector field es-
timation process that yields sparse vector field abstractions of activity
patterns from groups of trajectories. The key feature of our approach is
the estimate of the probability density function (PDF) of targets posi-
tions: it automatically tunes the cost function parameter, and serves as
weights in the sparse estimation problem. We also propose a trajectory
labeling algorithm that labels trajectories according to their activity pat-
terns using the vector field abstractions. Experiments in synthetic and
real trajectory data show that the proposed estimation approach yields
correctly sparse vector fields, which are similar to known generating vec-
tor fields, and 5-12% higher labeling accuracy on test trajectories when
compared to other generative models. Outlier trajectories are also de-
tected.
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1 Introduction

Far-field activities can be described by trajectories [10, 4], their spatial and angu-
lar features [9, 1], or by generative models [2, 12, 6, 11]. A high-level description
of the spatial distribution of frequent activity patterns can support anomaly
detection [8] and accessibility planning [5], and encode semantic regions of the
scene [13].
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In the literature, both diffusion and probabilistic models have been used to
describe frequent activity patterns and to label trajectories according to activity
patterns. On the one hand, diffusion models such as optical flow models have
been used to describe coherent motions and semantic regions [14], and heat maps
based on thermal diffusion processes have been used to capture the temporal mo-
tion information of activities [7]. On the other hand, probabilistic models such
as Hidden Markov Models have been used to detect the points of interest in a
scene [11], and Dirichlet Process Mixture Models have been used to robustly la-
bel new trajectories according to their activity patterns [6]. These studies either
focused on attributing a single semantic meaning to specific spatial regions [14,
11], or on labelling trajectories according to their activity patterns [7, 6]. How-
ever, neither of them provide straightforward information about velocity and
direction of the activity patterns, and only the latter are able to describe differ-
ent global activity patterns in the same region of the scene. Typically, this type of
motion information is associated to vector fields which embed both the physical
meaning of motion (i.e., velocity and direction) and the semantic interpretation
of different regions of the scene [12, 5].

We propose to (i) describe multiple, complex activity patterns using layered
vector fields and (ii) label test trajectories according to activity patterns using
the estimated vector fields. Our approach extends that of previous studies in that:
(a) it imposes data-driven sparsity to the vector field abstractions to prevent
erroneous extrapolations in regions with no target data (contrarily to [5, 12]);
(b) it is sensitive to concurrent activity patterns (contrarily to [14, 11]); and
(c) it provides information on the velocity and direction of activity patterns
(contrarily to [7, 6]).

The proposed vector field estimation uses a cost function specifically designed
to yield sparse estimates. Contrarily to other studies, which induce sparsity of
the vector field estimates through the l1-norm [3], this work does so through
statistical conditioning on available data – the estimated spatial Probability
Density Function (PDF) of the targets positions restricts vector field estimates
to the regions where targets are observed. The proposed cost function further
benefits from automatic parameter tuning using targets positions and trajectory
features. Layered vector field abstractions can be obtained if the proposed ap-
proach is applied on pre-clustered trajectories with similar activity patterns. We
assess the accuracy of the vector field abstractions of synthetic trajectories by
comparing the estimated and generating vector fields, and the correct sparsity
by comparing the estimated vector fields in regions with no target data with
the null vector field. Vector field comparisons focus on the mean vector length
(RMSL) and the vector similarity coefficient (R) [16].

Moreover, we propose a trajectory labeling algorithm according to activity
patterns. The displacement error between test trajectories and generated trajec-
tories using the estimated vector fields is the measure for classification. This way,
test trajectories are sorted according to activity patterns or detected as outliers.
We assess the accuracy of the trajectory labeling algorithm by comparing the
attributed and the observed activity pattern labels of test trajectories.
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Fig. 1. Probability density functions of the targets positions for 3 different activity
patterns from the synthetic data set (D0). Gradient colours of ascending density of
data points from dark blue to yellow.

2 Estimation of Multiple Vector Fields

We first aim to estimate the vector field, T , that describes the activity patterns
of a set of S trajectories, X = {x1, . . . ,xS}. Let t = 1, . . . , Ls and the target
position, xs(t), in the image plane of a camera be driven by T according to

xs(t) = xs(t− 1) + T (xs(t− 1)) +ws(t) , (1)

where ws(t) ∼ N (0, σ2 I),∀ t, is a white random perturbation. Let the image
plane be normalized, thus xs(t) ∈ [0, 1]2 ∀ t.

The vector field, T : [0, 1]2 → R2, is defined only at the grid nodes of an over-
imposed regular, uniform grid, G = {gn ∈ [0, 1]2, n = 1, 2, . . . , N}, on the image
plane. As the target trajectories can be defined in any image coordinate, even
if it does not correspond to a grid node (xs(t) /∈ G), we bilinearly interpolate
to represent the vector field that drives the target position on any coordinate of
the image plane, xs(t) /∈ G:

T (xs(t)) =

N∑
n=1

φn(xs(t)) tn , (2)

where φn(xs(t)) are the interpolation coefficients of the velocity vectors, tn, at
the grid nodes. The matrix of interpolation coefficients for set X is Φ.

Vector field estimation corresponds to an optimization problem where T is
the minimizer of a given cost function that has to induce data-driven sparsity. To
impose sparsity of the vector field estimates in the regions where target data does
not exist, the velocity vectors in T are weighted by 1 minus the spatial probability
density function (PDF) of targets positions, i.e., D = 1 − Γp, Γp ∈ RN . Γp is
the estimated PDF of the targets positions using the Parzen window algorithm
over set X . Then, to get its value at the grid nodes, we discretize at the desired
image coordinates (Fig. 1).

The cost function is therefore defined as

f(T ) = ‖V − T Φ‖22 + α ‖T ◦ 1D>‖22 , (3)

where 1 is of size [2×1], ‖ . ‖2 defines the l2-norm of a vector, “◦” represents the

Hadamard product, and T ∈ R2×N , V ∈ R2×M ,Φ ∈ RN×M ,M =
∑S

s=1(Ls−1),
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are given by

T =
[
t1 . . . tN

]
, (4)

V =
[
v1(2) . . .v1(L1) | . . . | vS(2) . . .vS(LS)

]
, (5)

Φ =

 φ1(x1(1)) . . .φ1(x1(L1 − 1))
...

φN (x1(1)) . . .φN (x1(L1 − 1))

∣∣∣∣∣ . . .
∣∣∣∣∣
φ1(xS(1)) . . .φ1(xS(LS − 1))

...
φN (xS(1)) . . .φN (xS(LS − 1))

 ,
(6)

with matrix V composed of the velocity vectors between consecutive target
positions, i.e., vs(t) = xs(t)− xs(t− 1).

In Eq. (3), α is correlated with the grid resolution N . To avoid manual
parameter input in every estimation procedure, we propose an automatic tuning
based on the cardinality of the non-zero elements (i.e., | · | 6=0), expected value
(i.e., E[ · ]), and standard deviation [i.e., σ( · )] of the estimated PDFs of target
and trajectory features,

α = 1− |Γp| 6=0

N
, (7)

N = max
{
Nmin, |Γc|6=0 > E[Γc] + 1.5σ(Γc)

}
, (8)

where Γp is the spatial PDF of the target positions as before; Γc ∈ RN is the
average curvature of the trajectories at the grid nodes, which is estimated using

the velocity angles θ(t) = tan−1
(

y(t)−y(t−1)
x(t)−x(t−1)

)
[8, 1]; and Nmin is the minimum

grid resolution selected by the user. In (8), very curly trajectories (i.e., extreme
values of the distribution of Γc) define the grid resolution.

Multiple vector fields can be estimated using (3) if it is applied to each set of
pre-clustered trajectories (Xk) with similar activity patterns, e.g. using multiple
features [1]. In the following, we assume that the pre-clustering step has taken
place and that we have access to the sets Xk.

3 Activity Pattern Labeling

Our second aim is to label trajectories according to their activity patterns. To
achieve this aim, we first estimate the T k following the above approach and
using only trajectories from training sets Xk. Then, we propose the following
labeling algorithm:

1. Trajectory labeling:
(a) Generate trajectories from the starting point of a given test trajectory

using the estimated T k and (1);
(b) Compute the displacement error as the euclidean distance between the

generated and the test trajectories;
(c) Label each test trajectory with the activity pattern (vector field abstrac-

tion) that yields the smallest displacement error.
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Fig. 2. Histogram of displacement errors between validation trajectories and gener-
ated trajectories using the known labels of activity patterns (vector fields). The cutoff
threshold is shown in black. The validation trajectories used in this example come from
the real data set D3.

2. Outlier detection using threshold:

(a) Compute the cutoff threshold as the sum of the median and the median
absolute deviation (MAD) of the displacement errors obtained from steps
1.(a) and 1.(b) applied on a set of validation trajectories (Fig. 2);

(b) Label test trajectories as outliers of the labeled activity pattern from
step 1.(c) if their displacement error is above the threshold.

In the Outlier detection step above, the cutoff threshold for outlier detection
is the sum of the median and median absolute deviation of the displacement
errors. We use the median and its absolute deviation instead of the mean and
standard deviation given that the distribution of displacement errors is right
skewed.

4 Experimental Results

4.1 Synthetic data

Assessment measures. Estimates of vector fields using synthetic data (T est)
are assessed regarding both the accuracy when compared to the known generat-
ing vector field (T ref) and the correct sparsity compared to the null vector field
(T 0) in regions where no target data is observed. Let each node on the over-
imposed grid be labeled according to its proximity to a given trajectory as an
active node, if it belongs to a square of nodes containing part of a given trajec-
tory, or a non-active node, if it does not belong to such a square of nodes. Thus,
the region where no target data is observed is defined as the set of non-active
nodes in the image plane, Z, with respect to a given trajectory set.

The assessment measures compare pairs of vectors regarding the vector sim-
ilarity coefficient (R), i.e., the mean of the inner product of normalized vector
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Fig. 3. Vector field estimates for the 6 activity patterns of the synthetic data set (D0).
Activity patterns are ordered across rows from left to right (top: 1, 2, 3; bottom: 4, 5,
6). Generating vector fields are shown in red, estimated vector fields in blue, generated
trajectories in gray.

pairs from 2 vector fields A and B, defined as [16],

R =
1

|P|
∑
i∈P

t̂
A

i · t̂
B

i ; (9)

and the vector root mean square length (RMSL), i.e., the systematic difference
in the mean vector length, defined as [16],

RMSL = L2
V =

1

|P|
∑
i∈P

∥∥∥ tAi − tBi ∥∥∥2
2

; (10)

where “·” is the inner product, t̂ = t√
‖t‖22

, ‖ . ‖2 represents the l2-norm of a vec-

tor, and | . | represents the cardinality of a set. In the case of accuracy assessment,
A = T ref, B = T est, and P = G, the set of grid nodes. In the case of correct
sparsity assessment, A = T 0, B = T est, and P = Z, the set of non-active nodes.
The optimal values for these measures are (R, RMSL)= (1, 1) and RMSL= 0,
respectively for accuracy and sparsity assessments.

Data set. The synthetic data set (D0) has 300 trajectories generated using 6
different activity patterns. We use D0 as a proof of concept for the assessment
of accuracy and correct sparsity of the estimated vector fields.

Results. Fig. 3 shows that the vector field estimates are very similar to the
generating vector fields not only in terms of magnitude (RMSL) and direction
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Table 1. Overall accuracy of trajectory labeling for the proposed approach and com-
parison with literature results [6, 14, 11].

Data Set
activity traj. per Overall Accuracy (%)
patterns pattern Ours Literature

D0 6 50 100.00 –

D1 15 18–278 87.81 [82.00, 86.70]
D2 11 20 95.45 [86.30, 91.80]
D3 19 100 99.47 [95.00, 98.00]

(R) but also regarding sparsity in the regions with no data, as expected. The
accuracy of the estimated vector fields (activity patterns) is respectively (R,
RMSL) 1: (0.920, 0.663); 2: (0.952, 2.305); 3: (0.982, 0.979); 4: (0.973, 0.723);
5: (0.954, 9.787); 6: (0.968, 0.763), and the RMSL of the vector field estimates
corresponds to sparse vector fields, i.e., all bellow 2.94e-04.

4.2 Real data

Assessment measures. Activity pattern labeling accuracy is computed by
comparing attributed and known trajectory labels taking into account the cutoff
threshold as

Acc =

∑
diag(M)∑
ijMij

, (11)

where M is the confusion matrix in a problem with multiple activity patterns.

Data set. The real data sets we used are: D1 (Hu), containing 1500 trajectories
with 15 activity patterns [6]; D2 (Wang), containing 220 trajectories with 11
activity patterns [14]; D3 (Morris), containing 1900 trajectories with 19 activity
patterns [11]. We use these data sets to assess activity pattern labeling and
outlier detection.

Results. Table 1 shows that overall the proposed algorithm correctly labels
trajectories according to their activity patterns with an accuracy above that de-
scribed in the literature. More specifically with higher accuracy than Heat-map,
HMM, and DPMM, which are comparable generative models used to describe
activity patterns [6, 14, 11, 15].

Regarding outlier detection, note that the proposed algorithm always assigns
an activity pattern to a trajectory – the attributed activity pattern is the one
that generates trajectories with the smallest displacement error relative to the
test trajectory. However, if the displacement error is above the threshold the
respective trajectory is plotted in a different colour than the others and tagged
as an outlier. Fig. 4 shows examples of 2 activity patterns for each real data set,
which have similar motion patterns but different semantic meanings. Concerning
Activity Pattern I, only D1 has outlier trajectories from two other activity pat-
terns (shown in different colors, Fig. 4 middle row). Concerning Activity Pattern
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Fig. 4. Examples of trajectory labeling using the real data sets (D1, D2, and D3),
only two example activity patterns are shown for each data set. Top row. Overview of
background image and test trajectories. Middle row. Correctly labelled trajectories and
over-imposed estimated vector fields (black arrows) for Activity Pattern I. Bottom row.
Correctly labelled trajectories, over-imposed estimated vector fields (black arrows), and
outliers (shown in different colors) for Activity Pattern II.

II, all the data sets have outlier trajectories from Activity Pattern I, and D1 also
has outlier trajectories form one additional activity pattern (Fig. 4 bottom row).

The proposed approach yields vector field abstractions that can distinguish
between similar activity patterns with different underlying semantics, given that
for each data set, trajectories which were wrongly labelled as having one activity
pattern were correctly detected as outliers of that activity pattern. For example,
the green outlier trajectories from D1 (Fig. 4 bottom left panel) are detected as
outliers of that activity pattern – whereas the vector field of interest describes
a left turn into the primary road, the outlier trajectories correspond to targets
that instead performed a left turn into a secondary road. Similar examples for
the other two data sets are shown in the bottom row of Fig. 4.
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5 Conclusion

We proposed a vector field estimation approach that copes with dense trajec-
tory data and yields compact abstractions of frequent activity patterns. The
proposed approach abstracts frequently observed activity patterns and embeds
data-driven sparsity, through the estimated spatial Probability Density Function
(PDF) of the targets positions. Moreover, it informs about the physical and se-
mantic meaning of the observed activity patterns. Finally, the estimated vector
fields can be used to label new trajectories and detect outliers according to their
activity pattern, with an improvement of about 5-12% on trajectory labeling
accuracy when compared to other generative models.
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