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Abstract: In this work it is shown how the Fokker-Planck equation can be used to address the solution
of problems in a variety of fields in which a set of dynamical agents is concerned, including continuous
discrete filters, adaptive control, and tracking groups of targets.
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1. INTRODUCTION

The Fokker-Planck Equation (FPE) provides a link between a
continuous Markov stochastic system, described by a stochastic
differential equation and the time evolution of the probabil-
ity density function (pdf) of its state (Jazwinski (1970)). Ap-
plications cover a diversity of areas, such as telecommunica-
tions (Viterbi (1963)), agriculture (Scheerlinck et al. (2004)),
molecular biology (Smith (2002)), or fire propagation (Séro-
Guillaume et al. (2008)). From another point of view, the FPE
may be considered as a way of describing the expected dynamic
behaviour of an ensemble of stochastic agents. An example is
provided by a large number of mobile robots that are to be
controlled such as to achieve a specified spatial distribution.
This example, thoroughly treated in Foderaro et al. (2014)
may be transposed to other application areas, such as internet
congestion (Mukherjee and Strikwerda (1991)), or avoiding
overloads in a power appliance population.

The early references Jazwinski (1966, 1970) propagate the state
pdf using the FPE and then use Bayes law to filter this predicted
density using the observations,. More recently, this subject
receives significant attention, including the use of Feynman
path integrals to approximate solutions to the FPE (Balaji et al.
(2008); Balaji (2009)), kernel density estimates again together
with path integrals (Singer (2003)), and fast approximations
(Mazzoni (2012)).

The techniques addressed in this article may be seen as a means
to study networks of interacting agents whose collective dy-
namics emerge from a large number of ensemple members. The
present work addresses problems in which the FPE propagates
in time a pdf that reflects the a priori expected behaviour of a
population of agents from which the evolution of a single agent
is then individuated through observations made with appropri-
ate sensors. For this purpose, a way to obtain the approximate
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solution of the FPE in discrete time is presented. Two case
studies are addressed. One consists of parameter estimation for
the model of a single individual subject to general anaesthesia,
drawn from a population for which a statistical characterization
is available, and its extension to dual adaptive control. The
second case study consists of the tracking of a target (e. g., a
person) that moves in a region in which multiple preferred paths
are a priori known.

The paper is addressed as follows. After this introduction, the
characterization of the motion state of stochastic agents in
continuous and discrete time is presented in section 2, together
with a discrete time approximation of the solution of the FPE.
Section 3 presents the case study on target tracking, section
4 the one on parameter estimation and dual control. Finally,
section 5 draws conclusions.

2. STOCHASTIC AGENTS AND THE FPE

This work considers stochastic agents described by the stochas-
tic differential equation (SDE)

dxt = f(xt)dt+ σdwt (1)
where σ is a constant parameter, x ∈ Rn, the initial condition
x(0) = x0 is a random variable with pdf px0 , andwt is a Wiener
process such that E(dwtdw

T
t ) = Qdt, with Q a constant

matrix. Under this assumption, (1) is the same in either the Itô
or Stratonovitch sense. For t > 0 the pdf p(x, t) of the state
x of the diffusion process satisfies the Fokker-Planck equation
(FPE) Jazwinski (1970), given by
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For x a scalar (n = 1), the FPE equation reduces to
∂p

∂t
= −fx(x)p− f(x)
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∂2p

∂x2
, (3)

with the initial condition
p(x, 0) = px0(x), (4)

and the boundary conditions
p(±∞, t) = 0, ∀t > 0. (5)



  Continuous
state equation

    Discrete
state equation

 Fokker-Planck
     equation

Operators for
discrete time
pdf propagation

Discretize in
time (1st order)

Discretize in
time (operator
composition)

Propagate the
a priori pdf of
the state
(discrete time)

  Propagate the
   a priori pdf of
      the state
(continuous time)

Fig. 1. Probabilistic interpretation of discretizing the FPE

In order to obtain an approximate formula for the solution of
the FPE over a small interval of time ∆, consider the operators
T i∆, i = 1, 2, 3, defined by

T 1
∆p(x, t) ≈

1

1 + fx(x)∆
p(x, t), (6)

T 2
∆p(x, t) ≈ p(x− f(x)∆, t), (7)

and
T 3

∆p(x, t) = p(x, t) ∗G(x, ∆), (8)
where ∗ stands for convolution and G is the Gaussian kernel
given by

G(x, ∆) =
1

(2πσ2∆)
1/2

exp

(
− x2

2σ2∆

)
. (9)

Then, up to first order terms in the time increment ∆, the
following approximate solution of the FPE holds,

p(x, t+ ∆) ≈ T 3
∆T

2
∆T

1
∆p(x, t). (10)

The approximation (10) is justified by the so-called ”Trotter’s
formula” (Trotter (1959)), being valid under conditions trhat
are verified by the operators T 1, T 2 and t3. Although the
convergence of this approximation is only linear in the time
step ∆, it has the advantage of allowing the probabilistic
interpretation shown in figure 1, in addition to its simplicity.

On the other way, sample now the SDE 1 using the first
order Euler-Maruyama method Higham (2001) to obtain the
stochastic difference equation:

xk+1 = xk + f(xk)∆ + σ(wk+1 − wk) (11)
where xk := x(k∆), wk := w(k∆) and ∆ ∈ R is the
time discretization step. The solution of (11) converges to the
solution of (1) in mean square when ∆→ 0 Jazwinski (1970).

Furthermore, for ∆ small, the operators that propagate in dis-
crete time the pdf of the state of the discrete model (11) are the
same as the ones that approximate the solution of the FPE in
(10). Figure 1 illustrates this fact by a block diagram: starting
with a SDE that defines the state evolution in continuous time,
one may either sample it to obtain an approximate discrete state
equation and then propagate in time the state pdf, or propagate
the state in continuous time, using the FPE and, finally, approx-
imate the solution of the FPE by applying convenient operators,
that yield the same result.

An example is provided by the PLL error dynamics Viterbi
(1963), where the vector field of the SDE is given by

f(x) = ax−KPLLsin(x), (12)
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Fig. 2. Solution of the FPE for the PLL and relative frequency
plot of Monte Carlo simulations for t = 20
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Fig. 3. Solution of the FPE for the PLL and relative frequency
plot of Monte Carlo simulations for t = 700

and a ≤ 0 and KPLL are constant parameters. Figures 2 and
3 show the solution of the FPE given by (10), at two different
time instants, superimposed on the relative frequency plot of
the values of the state of the difference equation, obtained in
a Monte Carlo simulation with 1000 runs. These results are
shown just to illustrate the two ways of propagating the state
of a stochastic dynamical system. In a practical situation, it is
advantageous to use the FPE or the operators that propagate its
solution to obtain the state pdf, rather then resorting to Monte
Carlo simulations with (11). Furthermore, although there are
numerical methods to solve the FPE, such as the Cranck-
Nicholson method, see e. g. Keller (1960), in which the error
convergence is of second order, the method proposed has the
advantage of both being explicit as well as providing a direct
link with the dynamic state equations (a pdf shift, associated to
the vector field f , that corresponds to operators T 1 and T 2, and
a convolution with a Gaussian kernel, as defined by T 3, that
corresponds to the stochastic term).



3. TARGET TRACKING

Target (including pedestrians or surface vehicles, such as cars or
bicycles) surveillance in far field settings, i. e., when the camera
covers a wide field and it is impossible to extract detailed shape
information about the object being supervised, is a subject that
is currently attracting a significant attention Nascimento et al.
(2013). This example is concerned with the surveillance of
areas where the trajectories most frequently followed present a
defined pattern. If the trajectories are generated by a stochastic
motion dynamic model, as (1), the a priori pdf of target distri-
bution as a function of time satisfies a FPE that is derived from
the it.

Add now to (1) the observations model
y(t) = h(x(t)) + η(t), (13)

where y ∈ R is the observation, h : Rn → R and {η} is a
sequence of independent, identically distributed Gaussian ran-
dom variables with zero mean and variance σ2

η . Assume that the
observations are made at discrete time instants t0, t1, . . . , tk
and define the set of observations

Y tk = {y(t0), y(t1), . . . , y(tk)}. (14)
With an abuse of notation we consider pdf conditioned on sets
like Y tk where the conditioned should be on the σ-algebras
associated to these sets. We consider the problem that consists
of estimating x(ti) from the observations of y up to time t.
Whatever the estimation criterion might be, the full information
required to compute the estimate is contained in the pdf of x
given the observations. This pdf is computed according to the
following steps:

FPE based filter

Let p(x(tk−1)|Y tk−1) (the ”filtered pdf”) be available from the
previous steps of the algorithm.

• Prediction step: Compute p(x(tk)|Y tk−1) (the ”predicted
pdf”) by propagating from time tk−1 until tk the pdf
p(x(tk−1)|Y tk−1). For this sake solve the FPE (3) in the
time interval that starts at tk−1 and ends at tk, taking as
initial condition p(x(tk−1)|Y tk−1).
• Filtering step: Compute the filtered pdf at time tk using

p(x(tk)|Y tk) = K(tk)p(y(tk)|x(tk))p(x(tk)|Y tk−1),
(15)

where K is a normalizing constant that depends on time.

2

The proof of (15) uses a well known argument based on
Bayes law. The pdf p(y(tk)|x(tk)) depends on the observations
(sensor) model. In the situation described by (13),

p(y(tk)|z(tk)) = Cηexp

{
− 1

2σ2
η

[y(tk)− h(z(tk))]2
}
, (16)

where Cη is a normalizing constant.

For the sake of illustration, figure 4 shows an example with
multiple target tracking, in just one dimension. The solution of
the FPE is shown in the plane defined by time and the state
x.The initial condition is a mixture of Gaussian functions that
has two modes centered at x = 5 and x = 7 that correspond to
the most probable regions from which targets start. Each of the
pdf plots marked with blue lines corresponds to one iteration of
(10). Every 5 discrete steps this a priori pdf is updated from
the observation of three targets, the exact position of which
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Fig. 4. Target tracking in one dimension
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Fig. 5. Target tracking in two dimensions

(marked with round bullets) is corrupted by Gaussian noise. A
filtering step is then performed using (15), from which the red
line pdf plots result.

Figure 5 shows the first 5 steps for a two dimensional state, as
is the case when considering the position in a 2D scene.

4. PARAMETER ESTIMATION AND DUAL ADAPTIVE
CONTROL

The previous ideas are now extended to the simultaneous es-
timation of parameters and state. Although more general sit-
uations can be considered, it is assumed that the parameters
are constant, but unknown, and that the process noise can be
neglected, the only source of uncertainty stemming from the
initial condition that is assumed to have a known pdf. Consider,
thus, a nonlinear system modeled by the state equation

dx

dt
= f(x, θ), (17)

with state x ∈ Rn, parameters θ ∈ Rnp , f : Rn × Rnp → Rn.

The initial condition x(t0) = x0 is, in general, a random
variable with pdf px(x(t0), t0). Consider first the situation in
which the parameter vector is constant, being a random variable
for which the only a priori information about it is the pdf pθ(θ).
Depending on the value of θ, different trajectories of the state x
are obtained. At each time t, the state x = x(t, θ) is therefore
also a random variable characterized by a pdf px(x, t), even if
x(t0) is deterministic. In order to compute px(x, t), define the
augmented state z ∈ Rn+np given by

z(t) =

[
x(t)
θ

]
. (18)



The augmented state verifies the equation
dz

dt
= F (z), (19)

with

F (z) =

[
f(x)

0

]
,

and initial conditions that derive from (1) in a straightforward
way. Computing p(z, t) provides not only the required informa-
tion on px(x, t) but also on pθ(θ, t).

Under the modelling assumptions made, the FPE reduces to the
so-called Liouville equation

∂

∂t
p(z, t) +

n+np∑
i=1

∂

∂zi
(Fi(z)p(z, t)) = 0, (20)

or, in a more compact way,
∂p

∂t
+
∂p

∂z
F + tr

(
∂F

∂z

)
p = 0, (21)

where
∂p

∂z
=

[
∂p

∂z1
. . .

∂p

∂zn+np

]
is the gradient of p with respect to z, and

∂F

∂z
=

[
∂Fi
∂zj

]
is the Jacobian matrix of F with respect to z at time t. The
solution of (20) (or, equivalently, (21)) is subject to the initial
condition p(z, t0) specified and to the boundary conditions
lim z → ±∞ = 0.

While the FPE is a parabolic equation, the Liouville equation is
a hyperbolic equation. Moreover, the Liouville equation can be
solved exactly using Laplace’s method, Ibragimov (1999).

In order to illustrate this method, consider the neuromuscular
blockade of patients subject to general anesthesia induced by
atracurium administration, Lemoset al. (2014). The dynamic
system for the neuromuscular blockade may be modeled by
(22) and (23). Here, the parametrization proposed in Silva et
al. (2012) is used. The linear part of the model, (22), relates
the input of the system, i.e. the drug infusion rate or atracurium
dosage u(t) to the state variable x3(t).

dx

dt
=

[−10α 0 0
4α −4α 0
0 α −α

]
x(t) +

[
10α

0
0

]
u(t), (22)

where x(t) = [x1(t), x2(t), x3(t)] and α is an unknown
patient dependent parameter Silva et al. (2012).

The observation model is given by the Hill equation

y(t) =
100

1 + (x3(t)/3.2425)γ
+ η(t), (23)

where y is the observation of the blockade level r, γ is a patient
dependent parameter Silva et al. (2012) and η is assumed as a
Gaussian noise with standard deviation ση = 3.

Due to clinical reasons, for the population considered, the
initial conditions are set as x1(0) = 5000α and x2(0) =
x3(0) = 0. The parameters α and γ : are assumed to have,
respectively, the pdf log(α) ∼ N(−3.287, 0.1582), log(γ) ∼
N(0.9812, 0.34582).

The joint parameter and state estimation algorithm can be
used to develop a dual adaptive controller for sample data
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Fig. 6. Parameter estimation using the FPE based filter in a
clinical data record of neuromuscular blockade induced by
atracurium

nonlinear systems with unknown parameters. For that sake,
consider the plant with unknown parameters modelled by (17)
or, equivalently, (19), where z is a hyperstate Åstrom et al.
(1999), but assume now that the vector field f also depends
on a control variable u. Furthermore, assume that the plant is
sampled with a sampling interval ∆. Let the performance index
for control optimization be

J = E

{
N−1∑
k=0

Lk+1 (x(k + 1), u(k))

}
, (24)

with Lk+1(·, ·) known positive, convex, scalar functions. The
problem of optimal dual control Åstrom et al. (1999) consists
of finding the sequence of control variables u(0), u(∆), . . .,
u((N − 1)∆) that minimizes J and belong to the set of
admissible controls. As is well known, the solution to this
problem is given by the dynamic programming equation Filatov
et al. (2004)
Vk(Y k) = min

u(k)
E
[
Lk(x(k + 1), u(k)) + Vk+1(Y k+1|Y k

]
, .

(25)
with terminal condition
VN−1(Y N−1) = min

u(N−1)
E
[
LN (x(N), u(N 1))|Y N 1

]
,

(26)
for k = N − 2, N − 3, . . . , 0.

Although the FPE could ideally be used to compute the expec-
tations in (25), (26), the ”curse of dimensionality” prevents in
general the numerical solution of these equations and leads to
the consideration of approximate methods Filatov et al. (2004).
Among these approximations, an effective one consists in com-
bining a bicriterial approach with model predictive control Silva
et al. (2005). Accordingly, the selection of the control variable
is made by considering at each sampling interval k∆ the two
cost functions

• Jck , the cautious control cost,
• Jak , the uncertainty cost,

according to the following steps

(1) Obtain the cautious control value uc(k) by solving
uc(k) = arg min

u(k)
Jck.



(2) Minimize Jak in the interval Ωk given by
Ωk = [uc(k)− ϑ(k), uc(k) + ϑ(k)].

This interval is centered in the cautious control value uc(k),
and its with is proportional to a measure of uncertainty of the
parameters computed friom the solution of the FPE. Therefore,
the approximate dual control law actually applied to the plant
at the sampling interval k∆ is

u(k) = arg min
u(k)∈Ωk

Jak .

Different possibilities may be considered to Jck and Jak . One
of them, that inherits the good qualities of model predictive
control is to make

Jkc = E

{
N∑
i=1

(y(k + i)− r(k + i)2 + ρu2(k + i− 1)|Y k
}
,

with ρ ≥ 0 and tr tyhe reference to track, and

Jak = −E
{

N∑
i=1

(y(k + i)− ŷ(k + i))2+

α(u(k + i− 1)− û(k + i− 1))2|Y k
}
,

with α ≥ 0 and ŷ and û the estimates of y and u.

In Silva et al. (2005), this algorithm has been developed by
considering linear models and an index of parameter uncer-
tainty yielded by the recursive least squares estimation algo-
rithm. Here, instead, the extension to the nonlinear case is made
possible through the use of the FPE.

5. CONCLUSIONS

The Fokker-Planck equation provides a mean to describe en-
sembles of stochastic agents that can be applied to a variety of
problems, that range from propagating the a priori pdf of the
process state, propagate the filtered state a posteriori pdf (i. e.,
given the observations), joint estimation of process state and
parameters, and adaptive control. Case studies concerned with
target tracking and model identification for patients subject to
anaesthesia are described to illustrate these actions. The state
estimation procedure based on the FPE is tightly related to
particle filtering (PF). The main difference is that, using the
FPE, there is no need to perform computationally heavy Monte
Carlo simulations, a task that is replaced with the solution of
the FPE, for which an approximate solution in discrete time
is presented. When considering adaptive control problems, the
FPE based approach to estimate the state and parameters has
the advantage of providing a characterization of the uncertainty
of the estimates that can be used to develop suboptimal dual
adaptive controllers.
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