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Abstract— 3D Object tracking is an essential technique in
computer vision and has many fields of application. In this
study, the focus lies on tracking objects impacting the envi-
ronment. We show that state-of-the-art methods lose track of
objects in this context and we investigate how to overcome this
problem by adding prior information regarding the object and
surface where collision is expected to occur. For illustration
purposes and application relevance, we focus on the case of a
box impacting a surface, which is, e.g., encountered in robot
tossing in logistics applications. We model the effects of impacts
and friction in a motion model, and consider the state of the
box to evolve in a Lie group. We present an object tracking
algorithm, based on an Unscented Particle Filter, for systems
whose state lives in a Lie group and incorporate this motion
model. The observations are taken from a single RGB camera
and make use of the known 3D model of the object and
color characteristics to predict its appearance in the 2D image.
We quantitatively evaluate the effectiveness of our proposed
methods by means of simulations on synthetic images.

Index Terms— Visual 3D Object Tracking, Nonlinear Dynam-
ics, Particle Filter, Nonsmooth Mechanics.

I. INTRODUCTION

Estimating the position and orientation of objects in a 3D
space from RGB images is an important problem in robotic
applications. In robotic manipulation, for example, accurate
pose estimation is advantageous for executing advanced
grasping tasks. In this paper, we focus on tracking rigid
objects that collide with the environment. This can be of
particular interest in real-world applications such as robot
batting [1] or robot soccer [2]. For sake of brevity, we focus
specifically on box-shaped objects as this is also relevant for
logistics applications, e.g., for robot tossing5. Our approach,
however, can be extended to objects with other geometries.

To the best of the authors knowledge, there is no specific
work in literature focusing on 3D object tracking in the
presence of collisions. A substantial body of work has
been recently published on 6D object pose estimation from
single-shot, potentially multi-view, RGB(D) camera images.
Relevant examples include [3], [4], [5], [6] and references
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therein. Making use of latent pose or shape representations
provided by variational autoencoders, these methods allow
to obtain quite robust pose estimates, also in the presence of
partial occlusions, for known objects [3], [4], [5] or objects
within a known class [6]. These single-shot pose estimation
techniques or more traditional methods such as RAPiD-like
approaches [7], [8], can then be used as measurement in
feature-based or model-based tracking algorithms as shown
in [9], [7], [10]. Instead of just employing an instantaneous
6D pose measurement at each instant of time, these tracking
algorithms make use of both current and past observations
y1:t [7], thereby improving tracking performance even fur-
ther. In these cases, the problem of object tracking becomes
the problem of estimating the filtering density, denoted as
p(xt|y1:t) [11], recursively in time. In addition to orientation
and position parameters, the object state xt then also includes
linear and angular velocity parameters.

Often, the filtering density is unknown, and there are nu-
merous approximation methods, with the Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF), and the
Particle Filter (PF) as the most prominent ones. The EKF
and UKF are only valid if the posterior distribution can
be closely approximated by a Gaussian distribution and
remains unimodal. On the contrary, the PF maintains several
hypotheses over time, which allows to approximate the full
posterior distribution of systems with non-linear dynamics
and non-Gaussian state distributions [12], [11], as is the case
for our specific case of tossing a box impacting a surface.
Impacts, in particular, lead to nonsmooth behavior, a rather
extreme case of nonlinearity with sudden state jumps. We
therefore base our approach on the PF.

In a PF, a set of particles {x(i)
t }Ni=1 are sampled from a

proposal distribution, q(x(i)
t |y1:t), to approximate the filter-

ing density. The quality of this approximation is reflected by
so-called unnormalized importance weights w̃(i)

t , which are
given as the ratio between the true filtering density and the
proposal distribution. Ideally, the proposal distribution is as
close as possible to the true filtering density [11] meaning
that the choice of proposal distribution is of high importance
for the approximation of the filtering density.

Within the context of visual object tracking with Particle
Filters, we consider two distinct open problems. First, in
literature (see, e.g., [13], [14]), the choice is often made
to use the prior distribution p(xt|xt−1) as a proposal, such
that the particles from the previous state xt−1 are directly
propagated to the next time step through a motion model,
without the use of the available observation yt. Conse-
quently, it may happen that the complete set of particles
moves away from the area with high likelihood, resulting in
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degeneracy of the particle set [15]. Second, in literature of
visual object tracking, the adopted motion model is typically
a constant velocity model [9], [16], [17]. To the best of the
authors’ knowledge, there does not exist literature on object
tracking algorithms exploring the possibility of incorporating
prior information regarding the object and surface that are
expected to get in contact, potentially undergoing impacts
(nonsmooth behavior).

To tackle the first problem, we propose to use the Un-
scented Particle Filter (UPF) [15], which uses a UKF that
takes the current observation into account to create a proposal
distribution. As the 6D pose of an object in 3D space does
not evolve in a vector space, but rather on a Lie group, we
propose a version of the UPF for a system whose state lives
in a Lie group. Although literature exists for particle filters
on Lie groups [9], [18] or Unscented Kalman filters on Lie
Groups [19], to the best of the authors knowledge, there does
not exist literature on the UPF on Lie Groups. We name this
new variant of the filter the Geometric Unscented Particle
Filter (GUPF), which can be seen as the first contribution of
this paper.

For dealing with the second problem (nonsmooth behav-
ior), we investigate the consequences of incorporating impact
and friction on a nonsmooth dynamical motion model in
the GUPF that more accurately describes the nonsmooth
dynamics of the object. In a numerical study, we will show
that, given the shape of the box, the post-impact velocity
is highly sensitive to the pre-impact velocity and pose,
and tracking algorithms based on constant velocity models
typically fail to track the object accurately beyond the impact.
Integrating a nonsmooth model in an object tracking strategy
is our second contribution.

The paper has the following structure. In Section II, we
introduce notation and review stochastic uncertainty models
on Lie groups. In Section III, we detail the Geometric Un-
scented Particle Filter. In Section IV, we apply the proposed
GUPF on box tossing, explicitly providing the motion model
and the observation likelihood function. In Section V, we
verify our proposed methods by means of simulations, while
Section VI concludes with a summary.

II. MATHEMATICAL PRELIMINARIES

We assume the reader is familiar with Unscented Kalman
Filters [15], Particle Filters [11], and matrix Lie groups [20],
[18]. We will use calligraphic letters to denote a Lie group
G, and fraktur letters to denote its corresponding Lie algebra
g. Since G is not a vector space, we cannot apply the usual
approach of additive noise. We follow the approach of [21],
[22] and define the wrapped Gaussian probability distribution
g ∼ NL (ḡ,Σ) for the random variable g ∈ G as

g := ḡExp(ξ), ξ ∼ N (0,Σ) , (1)

with ḡ ∈ G, ξ ∈ g, Σ ∈ g ⊗ g, and where N denotes the
ordinary Normal distribution in Euclidean space and ⊗ the
tensor product. The sample mean ḡ and covariance Σ can be
obtained from a sample set {gi}Ni=1 ∈ G as detailed in [23],
[24]. This procedure is shown in Algorithm 1 and will be

Algorithm 1 Weighted mean ḡ and covariance Σ computa-
tion on the Lie group G
Input: ḡ, {gi}Ni=1, {W (m)

i }Ni=1, {W (c)
i }Ni=1, θ

1: Compute the mean:
2: repeat
3: ξi ← Log

(
ḡ−1gi

)
, i = 1, . . . , N

4: ξ̄ ←
∑N

i=1W
(m)
i ξi

5: ḡ ← ḡExp(ξ̄)
6: until ‖ξ̄‖ < θ
7: Compute the covariance:
8: ξi = Log

(
ḡ−1gi

)
, i = 1, . . . , N

9: Σ =
∑N

i=1W
(c)
i ξiξ

T
i

Output: ḡ, Σ
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Fig. 1: Illustration of the box, about to make contact with a surface. The
gap function is indicated by gNi, together with the box frame B, contact
surface frame C, and inertial frame A.

used in Section III. Note that in Algorithm 1, θ is a threshold
value and an initial guess for ḡ should be given.

The state (pose-velocity pair) of a rigid body will be de-
noted by xt := (AR(t)B ,

Ao(t)B ,
Bv(t)A,B ,

Bω(t)A,B) ∈
S , where we define the state-group as S := SO(3) × R3 ×
R3 × R3

×, with R3
× denoting the cross product Lie algebra,

equivalent to so(3). Note that with AR(t)B we denote the
coordinate transformation from frame B to frame A and with
Ao(t)B we express the coordinates of the origin of frame B
w.r.t. frame A. For further details about this notation, see
[25]. We define the pose-group as P := SO(3) × R3, and
denote the Lie algebras corresponding to S and P as s and p,
respectively. See also Fig. 1 for a schematic overview of the
problem, where frame C defines the contact surface, frame
B the body-fixed frame of the box located at its center, frame
A the inertial frame, pi the contact points of the box, and
gNi the gap functions, as we will describe in Section IV. We
write all positions and velocities of the box frame B with
respect to the inertial frame A, such that we omit the sub-
and superscripts of A and B for the sake of brevity, that is,
e.g., we will write v for BvA,B .

III. THE GEOMETRIC UNSCENTED PARTICLE FILTER

This section will describe the newly proposed Geometric
Unscented Particle Filter (GUPF). We closely follow the
procedure of the UPF in [15] and stress that the novelty
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of our proposed GUPF lies in the fact that we generalize the
UPF for systems whose state evolves in a Lie group.

We assume an initial state distribution p(x0), defined by
a wrapped Gaussian with mean x̄0 ∈ S and covariance
P x

0 ∈ s ⊗ s. We thus sample a set of {x(i)
0 }Ni=1 particles

according to x
(i)
0 = x̄0Exp

(
χ(i)

)
with χ(i) ∼ N (0,P x

0 ),
such that these particles represent the initial state distribution.
At time t−1 (including the initial time), we consider a single
particle xt−1 where for the sake of brevity we have discarded
the superscript (·)(i). We follow the standard approach of
[15] and augment the state mean and covariance with the
process noise and observation noise parameters. To this end,
we define the augmented-state group A := S×S×P and the
augmented state as xa = (x,m,n) ∈ A, where x ∈ S is the
state, m ∈ S the process noise, and n ∈ P the observation
noise. The Lie algebra of A is defined as a := s⊗ s⊗p. We
will define the augmented state mean and covariance in the
tangent space at a point xa

t−1 = (xt−1,m,n) ∈ A as

χ̄a
t−1 = 0 ∈ a, P a

t−1 = diag(P x,Q,R) ∈ a⊗ a, (2)

respectively, where P x ∈ s ⊗ s is the state covariance,
Q ∈ s ⊗ s the process noise covariance, and R ∈ p ⊗ p
the observation noise covariance. This means the sigma
points are defined in the Lie algebra a (representing the
tangent space of A at the point xa

t−1 via left translation).
Since this is a vector space, the sigma points can be simply
computed as in [15], which gives χa

t−1 =
[
χ̄a

t−1 χ̄
a
t−1 ±√

(na + λ)P a
t−1
]
, where λ = α2(na + ζ) − na with ζ

and α scaling parameters to scale the sigma points and
na denoting the dimension of the augmented state, which
in our case is na = 30. As a result, each sigma point j
can be written as χa

j,t−1 = [(χx
j,t−1); (χm

j,t−1); (χn
j,t−1)],

where ; denotes row concatenation and where χx
j,t−1 ∈

s is the state component, χm
j,t−1 ∈ s the process noise

component, and χn
j,t−1 ∈ p the observation noise component

of the sigma point. Each sigma point is then weighted
such that the true mean and covariance of the particle are
fully captured by a set of weighted sigma points denoted

by
{
χa

j,t−1,W
(m)
j ,W

(c)
j

}2na+1

j=0
, where W (m)

j ∈ R are the

weights of the mean and W
(c)
j ∈ R are the weights of the

covariance as in [15] and Algorithm 1.

A. Creating the prior and proposal distributions
We now propagate the state component of the sigma

points χx
j,t−1 ∈ s, to obtain the predicted state sigma points

xj,t|t−1 ∈ S . Propagation is obtained through the motion
model f : S → S , and details of this model will be given in
Section IV. For now, we assume that this function is known,
such that, for every sigma point j ∈ [0, 2na],

xj,t|t−1 = f

(
xt−1Exp

(
χx

j,t−1
) )

Exp
(
χm

j,t−1
)
. (3)

Note that, in the Euclidean case, the noise parameters are
incorporated by simple addition. As in our case the state
evolves in a Lie group, this procedure is done by post-
multiplication of the exponential map of the noise param-
eters, as is illustrated by the last term of (3). The predicted

particle state mean and covariance can now be computed
by following the procedure of Algorithm 1, using x0,t|t−1
as initial guess for the mean. In this way, we obtain for
each particle its prior distribution, given by p(xt|xt−1) =
NL(xt|t−1,P

x
t|t−1).

As in [15], the next step is to incorporate a measurement.
In our case, such a measurement gives the 3D position and
orientation of the box, such that Zt = (R,o) ∈ P . This mea-
surement could be the result of some 3D model-based pose
estimation algorithm [7]. Our proposed method computes the
measurement as a weighted mean from the predicted set of
particles x

(i)
t|t−1 obtained by (3) by considering their pose

components H(i) = (R(i),o(i)) ∈ P and evaluating them
through a likelihood function L : P → R according to

L(i) = L(H(i)). (4)

For the specific case of rectangular boxes, we will detail this
function in Section IV. To compute the measurement from
a weighted mean on the pose group, we use as initial guess

Z̃t = arg max
i=1,...,N

(
L
(
H(i)

))
∈ P , (5)

and follow the same procedure as in Algorithm 1, substituting
W

(m)
i with the normalized likelihood L̃(i) associated to the i-

th particle. This average is taken as the measurement Zt ∈ P .
Each sigma point xj,t|t−1 in (3) is now evaluated through
the observation model h : S → P together with the noise
component of the sigma point to obtain the predicted pose

Hj,t|t−1 = h
(
xj,t|t−1

)
Exp

(
χn

j,t−1
)
∈ P . (6)

Using Algorithm 1, we compute the mean of the points
Hj,t|t−1 by using H0,t|t−1 as initial guess. This results in
H̄t|t−1, at which we consider a tangent space and we map
the predicted poses obtained in (6) to this space resulting in
Hj,t|t−1 ∈ p. The observation noise covariance and state-
observation cross-covariance are then given by

P zz
t|t−1 =

2na∑
j=0

W
(c)
j

(
Hj,t|t−1

)(
Hj,t|t−1

)T
∈ p⊗ p (7)

and

P xz
t|t−1 =

2na∑
j=0

W
(c)
j

(
χx

j,t|t−1

)(
Hj,t|t−1

)T
∈ s⊗ p, (8)

respectively. The innovation is then computed by incorporat-
ing the measurement at time t as in [19] such that

ρ = Log
((

H̄t|t−1
)−1

Zt

)
∈ p. (9)

The state mean is now updated according to

xt = xt|t−1Exp

((
P xz

t|t−1

(
P zz

t|t−1

)−1
ρ

))
, (10)

and the state covariance is then updated (cf. [19]) to obtain

P x
t = P x

t|t−1 − P
xz
t|t−1

(
P xz

t|t−1

(
P zz

t|t−1

)−1)T

(11)

with P x
t ∈ s ⊗ s. As a result, the proposal distribution for

each particle is given by q(xt|y1:t) = NL (xt,P
x
t ).
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B. Computing the weights for each particle

We now sample each particle from its proposal distribution
according to x̃t = xtExp (χ) with χ ∼ N (0,P x

t ) as in (1).
The prior distribution, the proposal distribution, and the like-
lihood function are then evaluated at this sampled particle,
from which the unnormalized weight can be computed using
the importance function as in [11]. The final state estimate is
obtained by computing a weighted mean of all the particles,
following Algorithm 1, where we consider the particle x̃

(i)
t

with the highest weight as the initial guess. Next, all particles
are resampled according to their weight as in [15].

IV. LIKELIHOOD FUNCTION AND MOTION MODEL

In this section, we describe how we apply the GUPF for
our specific case of tracking an impacting box. Therefore,
we describe the likelihood function used in (4), and derive
the motion model used in (3).

A. Color-based likelihood computation

The observation likelihood function is a measure for the
compatibility between the observed image and the object
pose. Instead of using an approach as in [10], which would
require the training of an auto-encoder, we use an approach
similar to [13], [26], where an accurate and computationally
efficient method is proposed for likelihood computation of
a particle from image data. This method utilizes sets of 3D
points, generated around a geometric model of the object,
which are a function of the object’s dimensions and the
particle’s pose with respect to the camera.

Fig. 2a shows the geometric model of the object and
shows the different sets of generated 3D points. In total,
we generate thirteen sets of points for each particle: six sets
of points laying on each face of the object (in green); six
sets of points laying on each face of the object near the
edges (in blue), and one set of points just outside the edges
of the object (in red). These sets of points are projected
to the image plane, resulting in corresponding sets of 2D
points in image coordinates. Fig. 2b shows the projection of
these sets of points to the image plane, given a state of the
particle. Note that we disregard all the self-occluded points,
i.e., the red points laying inside the contouring edges of the
box, and blue and green points laying on surfaces that are
not visible from the camera for this specific state. We then
compute color histograms for each set of 2D points using the
HSI color space as in [13], resulting in the color histograms
hcin
i (blue points) and hface

i (green points) for each visible
face i, and hcout (red points). Furthermore, each face has
an a-priori created reference color histogram href

i computed
from the known object texture maps. High likelihood values
should then be assigned to particles if, for each visible face,
the similarity between hcin

i and href
i as well as the similarity

between hface
i and href

i is high, while at the same time the
similarity between hcin

i and hcout is low. These similarities
are computed using the Bhattacharyya similarity function,
as described in [27], and we denote them by s1, s2, and
s3, respectively. Since the histograms are normalized, the

(a) (b)

Fig. 2: Generated 3D points around the geometric model (a) and their
projection onto the image plane for a given state (b).

similarities are in the range s ∈ [0, 1], where s = 1 refers
to a perfect match between histograms. We define

D =
κ1 (1− s1) + κ2 (1− s2) + κ3s3

κ1 + κ2 + κ3
(12)

with κ1, κ2, and κ3 scaling parameters. In the ideal case,
all terms in the numerator are zero when the particle is
representing the true state of the object and the background
and object colors are exclusive. Finally, the likelihood is
modeled as a Laplacian distribution as in [26] to obtain
p(yt|x(i)

t ) ∝ e−
|D|
ε , where ε is a scaling parameter.

B. Equations of motion

We now derive the motion model f used in (3). For the
sake of brevity, we will consider only a single particle xt−1
at a given time t − 1. We write its pose and velocity with
respect to the inertial frame A in terms of the transformation
matrix H = [R,o; 0, 1] ∈ SE(3) and the left-trivialized
velocity v = [v;ω] ∈ R6 as in [25]. This means that
we write the state as xt−1 = (H(t − 1),v(t − 1)) and
compute the predicted state xt|t−1 = (H(t),v(t)). To derive
the equations of motion and unilateral contact and impact
dynamics, we closely follow the framework of Glocker in
[28]. We write the equations of motion on the level of
momenta, to allow for inclusion of impulsive forces and
discontinuities in the friction force, such that

Mdv(t)+v(t)×̄∗Mv(t)dt = f(t)dt+WNdPN +WT dPT ,
(13)

where M denotes the inertia tensor, ×̄∗ the dual-cross product
on R6 as in [25], and f(t) the generalized wrench containing
the generalized forces and torques applied to the center of
mass of the body (except for the contact forces), which here
involve the gravitational forces. Furthermore, dPN and dPT

are respectively the differential measures of the momenta
associated to the contact/impact in normal direction and
tangential direction, respectively. These differential measures
consist of a Lebesgue measurable part λdt which denotes the
non-impulsive part of the contact/friction force and an atomic
part Λdη, denoting the impulsive part of the contact/friction
force [28], such that dPN = λNdt + ΛNdη and dPT =
λT dt+ ΛT dη. Furthermore, we can write the kinematics as

Ḣ(t) = H(t)v∧(t), (14)

with (·)∧ the hat-operator as in [25].
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C. Modeling unilateral contact, impact, and friction
Consider again Fig. 1, where frame C defines the location

and orientation of the contact surface and this frame is
oriented such that the unit vector ~zC defines the normal to
the plane. We consider the eight vertices of the box to be
the only potential contact points and denote them by pi.
The contact distance, referred to as the gap function, is the
distance in z-direction of C between the point pi and the
origin of C, defined as

gNi := AzTC

((
AoB + ARB

Bpi

)
− AoC

)
, (15)

and graphically depicted in Fig. 1. Under the assumption that
the body and surface are rigid, we can write the constitutive
law for unilateral contact using Signorini’s contact law [28]
using the proximal point formulation as in [29], such that

λN = proxCN (λN − rgN ) with r > 0, (16)

where CN = {λN ∈ Rnc | λN ≥ 0} is the set of
admissible normal forces, gN the column of normal contact
distances, and nc is the number of contact points. We will use
Newton’s impact law, given as γ+Ni = −eNγ−Ni, to relate the
pre-impact normal velocity γ−Ni to the post-impact normal
velocity γ+Ni through the normal coefficient of restitution eN
[28]. We use Newton’s model due to its simplicity and ease
of implementation, but stress that it can lead to inconsistent
results when applied in complex contact situations that can
occur in real-world collision scenarios [30], [31]. The normal
velocity is given by the time derivative of (15) such that
γNi = ġNi almost everywhere, and we write it in terms
of the left-trivialized velocity such that γNi = wT

Niv ∈ R,
where wT

Ni is the row-vector containing the force directions
of the contact impulses of pi. We introduce the variable
ξNi = γ+Ni + eNiγ

−
Ni to formulate an impact law that

relates the impulsive force ΛNi to γ+Ni via a complementarity
condition. This gives

ΛNi = proxCN (ΛNi − rξNi) ∀i ∈ Ic, (17)

where Ic is the set of closed contacts, CN = R+, and
r > 0. In order to model dry friction, we will use a set-
valued Coulomb friction model as in [28]. We will define
the tangential velocity γTi as the velocity of pi with respect
to C in x- and y-direction of the contact plane such that
γTi = wT

Tiv ∈ R2, where wT
Ti ∈ R2×n is the matrix

containing the force directions of the friction forces acting
on pi. We can formulate the set-valued force law for the
non-impulsive part of isotropic Coulomb friction as follows:

λTi = proxCTi (λTi − rγTi) , (18)

where CTi = {λTi | ‖λTi‖ ≤ µλNi} ∀i ∈ Ic and r > 0.
To account for impulsive friction forces associated with a
certain amount of restitution, we write the set-valued force
laws for Coulomb-friction in terms of momenta. Therefore,
we introduce the variable ξTi = γ+

Ti + eTγ
−
Ti ∈ R2 where

eT denotes the tangential coefficient of restitution. The set-
valued force law for ξTi and ΛTi then becomes

ΛTi = proxCTi (ΛTi − rξTi) (19)

(a) (b)

Fig. 3: Ground truth trajectories. First scenario (a) and second scenario (b).

with CTi = {ΛTi | ‖ΛTi‖ ≤ µΛNi} ∀i ∈ Ic and r > 0.

D. Numerical integration using time-stepping

We use a timestepping scheme as in [29] for numerical
integration of the equations of motion. The advantage of the
time-stepping method is that, when integrating the equations
of motion (13) over a time-interval possibly containing one
or more time instants at which impulsive loads occur, the
contributions of the smooth forces and impulsive forces are
both taken into account, which avoids the need for event
detection of the impacts and allows to perform simulation
beyond Zeno events [29]. At the beginning of each time step,
the pose H(t−1) of the object and the velocity v(t−1) are
known from xt−1, either from initial conditions or computed
from the previous time step. The velocity and pose at the
end of the time-step are computed using (13) and (14),
respectively. The values for dPN and dPT are found by
solving the so-called contact problem, defined by the set-
valued force laws of (16), (17), (18), and (19). We use an
augmented Lagrangian approach as discussed in [29] to solve
this contact problem, due to its simplicity and effectiveness
in our specific case of a single rigid body. In summary, the
time-stepping scheme consists of the following steps:

1. The pose H(t− 1) of the object and the left trivialized
velocity v(t−1) are known at the beginning of the time
step from the state xt−1;

2. The system matrices f , wNi, and wTi are computed,
from which γNi and γTi follow;

3. The values for v, λN , λT , ΛN , and ΛT at the end of the
time step are computed using an augmented Lagrangian
approach as in [29];

4. The pose of the object is updated to the next time step
according to (14) and form together with the velocity at
the end of the time-step the state xt|t−1 = (H(t),v(t)),
which can be rewritten to an element of S .

V. NUMERICAL VALIDATION

We validate the proposed method by simulations1 and
compare its performance to that of a state-of-the-art tracking
algorithms presented in [9], [16] and [17]. These works
use a standard with a constant velocity motion model, and
therefore differ from our proposed method both in filter-
ing technique and motion model. We consider two tossing

1The source code is available at https://gitlab.tue.nl/robotics-lab-
public/impact-aware-object-tracking.
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Fig. 4: Tracking results of the position for the various algorithms of the
second scenario. The x-position (left), y-position (middle), and z-position
(right) of the results are plotted together with the ground truth trajectory.

TABLE I: Resulting RMS values and error reduction of the second scenario.

Method ‖eo‖RMS Red. ‖eR‖RMS Red.
[m] [%] [deg] [%]

PF CV 0.931 - 130.6 -

PF NS 0.044 95.3 13.2 89.9
GUPF NS 0.007 99.2 2.0 98.4

scenarios for which ground truth trajectories and artificial
images are created. In the first trajectory, the motion of the
object is parallel to the camera image, while in the second
trajectory the object moves towards the camera. This allows
us to test the effect of camera orientation with respect to
the object’s motion. This means that the two trajectories
can be seen as two extreme cases, and we assume that
other camera orientations will give similar results. We can
write these trajectories by means of the pose of the box
as GTt = (AR(t)GT

B ,Ao(t)GT
B ) and Fig. 3 shows these

trajectories, where the black lines indicate the trajectories of
the center of mass of the box. Furthermore, for the first and
every fifth frame the pose of the box is shown and the camera
is illustrated. Assuming a camera frame rate of 60FPS, we
create a total of 65 artificial images for each trajectory.

In [9], [16], and [17], a constant velocity model is used
to describe the state transition on SE(3). In this constant
velocity model, no preference is given to any direction of
motion such that the equations of motion can be written as

H(te) = H(ta)Exp

(
∆tv∧(ta) +

√
∆ta∧

)
, (20)

v∧(te) =
1

∆t
Log

(
H(ta)

−1
H(te)

)
, (21)

where a ∈ R6 is a zero-mean white noise vector, ta and te
represent respectively the time at the beginning and end of
the time-step, and ∆t = 1/60 seconds, corresponding to the
assumption of a 60fps camera. We implement this motion
model in a PF on Lie groups, as in [9], [32], [33], and refer
to this as the PF with Constant Velocity model (PF CV).
Similarly, we implement our proposed nonsmooth motion
model in a PF, and refer to this as the PF with Nonsmooth
model (PF NS). Finally, we implement our proposed motion
model in the GUPF, and refer to this as GUPF NS.

In the simulations described in this section, we use a set of
500 particles for each simulation. To initialize the filter, one
could use the initial ground truth state as initial state for each

Fig. 5: Tracking results of the orientation for the various algorithms. We plot
the evolution of the x, y, and z axis of the coordinate frame B by plotting
the first, second, and third column of the rotation matrix AR(t)B on the
unit sphere. The asterisks indicate the starting point of the simulation.

Fig. 6: Tracking errors for the various algorithms for the second scenario.

of these particles. However, since the ground truth data and
the filter are based on the same motion model, this would
give the filter perfect knowledge of the motion of the object.
Instead, we sample the 500 particles from a distribution
centered around the ground truth state such that each particle
is initialized with a pose and velocity that is different from
the ground truth. To this end, we take the initial ground truth
state as the initial state mean and sample a set of 500 particles
around that mean using (1). The artificial images are used as
input to the different algorithms for likelihood computation
and obtaining a measurement at each time-step. As a result,
these algorithms give as output the estimated position and
orientation of the box frame B with respect to the camera
coordinate frame A. We can plot both the resulting position
and orientation from the different algorithms together with
the ground truth and this is shown in Figures 4 and 5. We
have plotted the results for the second scenario of Fig. 3 only,
due to space limitations, but both scenarios give qualitatively
similar results. To visualize the orientation in Fig. 5, we plot
the trajectories of the x, y, and z axis of the coordinate
frame B by plotting the first, second, and third column of
the rotation matrix AR(t)B on the unit sphere, where the
asterisks indicate the starting point of the simulation. Next,
we define the error in position between the results of the filter
and the ground truth as eo. We define the error in orientation
between the results of the filters and the ground truth as eR,
which gives the error as an element of so(3). We can take
its norm, denoted by ‖eR‖, to obtain the angular error in
radians, which can then easily be converted into degrees.
We have plotted these results in Fig. 6.

In Fig. 4, we observe that the PF CV loses track of the
box at frame 14, right after the first impact. The constant
velocity model is unable to predict the abrupt changes in
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velocity imposed by the impacts, and the particles drift away
from the true state. In Fig. 4 and Fig. 5, we observe that the
PF NS already provides superior tracking performance over
the PF CV, as a result of incorporating the proposed motion
model. However, when considering Fig. 6, we clearly see
the benefit of the GUPF NS, which outperforms the PF NS
by taking the current observation into account, therefore
bringing particles closer to the true state. Table I shows the
RMS errors for the different filters and shows for the PF NS
and GUPF NS the error reduction with respect to the PF CV.
This shows that both PF NS and the GUPF NS have superior
tracking performance with respect to the PF CV.

VI. CONCLUSIONS

In this paper, we have shown that state-of-the-art tracking
algorithms, making use of standard Particle Filters and
constant velocity models, tend to lose track of an object
that experiences abrupt changes in velocity imposed by
impacts. To tackle this problem, we propose to incorporate
potential collision priors within a suitable filter and create
a motion model which describes the nonsmooth dynamics
of an impacting object. We incorporate this model in a PF
and show that, even though tracking performance increases,
the PF still loses track of the object, as it does not take
current observations into account. We therefore propose a
new filter, the Geometric Unscented Particle Filter, which is
an extension of the UPF for systems whose state lives in a
Lie group, and apply this filter with the proposed nonsmooth
motion model. We show, in simulations, that our proposed
methods outperform the state of the art in terms of tracking
accuracy. In current research, we are applying the proposed
methods on a real setup to obtain experimental confirmation
of the findings obtained in simulation.
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